60-Nd-148 JAEA+ EVAL-Dec09 N.Iwamoto,A.Zukeran,K.Shibata DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6043 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by A.Zukeran,K.Shibata. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,33,102-107) added MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula): below 8.0 keV Resonance energies were taken from Tellier/1/ and Musgrove et al./2/ Neutron widths were adopted from Tellier, and radiation widths were deduced from capture areas measured by Musgrove et al. The average radiation widths were assumed to be 0.046 eV for s-wave resonances and 0.040 eV for p-wave ones. A negative resonance was added so as to reproduce the capture cross section of 2.5+-0.2 barns at 0.0253 eV/3/. In JENDL-4, the data for 94.93 - 398.84 eV were replaced with the ones obtained by Barry et al./4/ The parameters for the negative resonance were re-adjusted. Unresolved resonance region : 8.0 keV - 300.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /5/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /6/ and CCONE /7/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 6.8516e+00 Elastic 4.2699e+00 n,gamma 2.5816e+00 1.3863e+01 n,alpha 3.0429e-10 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /7/. MT= 16 (n,2n) cross section Calculated with CCONE code /7/. MT= 17 (n,3n) cross section Calculated with CCONE code /7/. MT= 22 (n,na) cross section Calculated with CCONE code /7/. MT= 24 (n,2na) cross section Calculated with CCONE code /7/. MT= 28 (n,np) cross section Calculated with CCONE code /7/. MT= 32 (n,nd) cross section Calculated with CCONE code /7/. MT= 33 (n,nt) cross section Calculated with CCONE code /7/. MT= 51-91 (n,n') cross section Calculated with CCONE code /7/. MT=102 Capture cross section Calculated with CCONE code /7/. MT=103 (n,p) cross section Calculated with CCONE code /7/. MT=104 (n,d) cross section Calculated with CCONE code /7/. MT=105 (n,t) cross section Calculated with CCONE code /7/. MT=106 (n,He3) cross section Calculated with CCONE code /7/. MT=107 (n,a) cross section Calculated with CCONE code /7/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /7/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /7/. MT= 17 (n,3n) reaction Calculated with CCONE code /7/. MT= 22 (n,na) reaction Calculated with CCONE code /7/. MT= 24 (n,2na) reaction Calculated with CCONE code /7/. MT= 28 (n,np) reaction Calculated with CCONE code /7/. MT= 32 (n,nd) reaction Calculated with CCONE code /7/. MT= 33 (n,nt) reaction Calculated with CCONE code /7/. MT= 51-91 (n,n') reaction Calculated with CCONE code /7/. MT=102 Capture reaction Calculated with CCONE code /7/. ***************************************************************** Nuclear Model Calculation with CCONE code /7/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,4 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./8/ (+) proton omp: Koning,A.J. and Delaroche,J.P./9/ deuteron omp: Lohr,J.M. and Haeberli,W./10/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/ alpha omp: McFadden,L. and Satchler,G.R./12/ (+) omp parameters were modified. 2) Two-component exciton model/13/ * Global parametrization of Koning-Duijvestijn/14/ was used. * Gamma emission channel/15/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/16/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/17/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/18/,/19/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Nd-148 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.30170 2 + * 2 0.75220 4 + * 3 0.91680 0 + 4 0.99920 3 - * 5 1.02312 1 - 6 1.17090 2 + 7 1.24214 5 - 8 1.24881 2 + 9 1.27969 6 + 10 1.40000 0 + 11 1.43200 1 - 12 1.47500 1 - 13 1.51151 3 + 14 1.51560 2 - 15 1.52146 1 - 16 1.57700 2 + 17 1.60000 0 + 18 1.60200 4 + 19 1.64460 7 - 20 1.64558 0 + 21 1.65400 3 - 22 1.65991 2 + 23 1.68340 4 + 24 1.68791 3 + 25 1.72500 3 - 26 1.72900 3 + 27 1.77800 3 - 28 1.80860 0 + 29 1.82440 0 + 30 1.83700 1 - 31 1.85630 8 + 32 1.85860 0 + 33 1.88700 4 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Nd-149 20.9000 0.9831 3.5199 0.4992 -1.1865 5.3955 Nd-148 21.1000 1.9728 2.8636 0.4784 0.2048 5.9010 Nd-147 19.7000 0.9897 2.4886 0.4934 -0.5694 4.7470 Nd-146 18.1900 1.9863 1.6792 0.5692 0.1138 6.4542 Pr-148 15.5000 0.0000 3.2403 0.6014 -1.8696 4.4395 Pr-147 17.0632 0.9897 3.0053 0.5856 -1.1357 5.6888 Pr-146 17.5893 0.0000 2.4188 0.5462 -1.6453 4.0472 Pr-145 16.8637 0.9965 1.7883 0.6002 -0.8883 5.5766 Ce-147 18.4207 0.9897 2.8111 0.5589 -1.1482 5.6286 Ce-146 17.6964 1.9863 2.1733 0.5745 0.0448 6.5077 Ce-145 18.2180 0.9965 1.7406 0.5686 -0.8969 5.4793 Ce-144 17.4894 2.0000 1.0129 0.5822 0.3675 6.2813 Ce-143 19.6000 1.0035 0.4100 0.4774 0.1189 3.9645 Ce-142 18.9500 2.0140 -0.3155 0.5558 0.6875 5.9346 -------------------------------------------------------- Table 3. Gamma-ray strength function for Nd-149 -------------------------------------------------------- K0 = 1.800 E0 = 4.500 (MeV) * E1: ER = 12.97 (MeV) EG = 3.47 (MeV) SIG = 122.11 (mb) ER = 15.97 (MeV) EG = 5.17 (MeV) SIG = 244.23 (mb) * M1: ER = 7.73 (MeV) EG = 4.00 (MeV) SIG = 1.12 (mb) * E2: ER = 11.88 (MeV) EG = 4.32 (MeV) SIG = 3.33 (mb) -------------------------------------------------------- References 1) Tellier, H.: CEA-N-1459 (1971). 2) Musgrove, A.R. de L., et al.: AEEC/E401 (1977). 3) Fedorova, A.F., et al.: "Proc. 3rd All-union Conf. on Neutron Physics, Kiev 1975", Vol. 1, 169. 4) Barry, D.P. et al.: Nucl. Sci. Eng., 153, 8 (2006). 5) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 6) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 7) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 8) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 9) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 10) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 11) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 12) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 13) Kalbach,C.: Phys. Rev. C33, 818 (1986). 14) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 15) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 16) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 17) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 18) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 19) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).