60-Nd-150 JAEA+ EVAL-Dec09 N.Iwamoto,A.Zukeran,K.Shibata DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6049 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by A.Zukeran,K.Shibata. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,33,102-107) added MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula): below 13.69 keV Neutron widths were adopted from Tellier/1/. Radiation widths were taken from the recommendation by Mughabghab and garber/2/. The average radiation width of 0.070 eV was assumed for levels which had no measured radiation width. A negative resonance was added so as to reproduce the capture cross section of 1.2+-0.2 barns at 0.0253 eV /3/. In JENDL-4, the data for 78.92 - 486.4 eV were replaced with the ones obtained by Barry et al./4/ The parameters for the negative resonance were re-adjusted. Unresolved resonance region : 13.69 keV - 300.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /5/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /6/ and CCONE /7/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 5.8344e+00 Elastic 4.7938e+00 n,gamma 1.0406e+00 1.4163e+01 n,alpha 8.6016e-17 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /7/. MT= 16 (n,2n) cross section Calculated with CCONE code /7/. MT= 17 (n,3n) cross section Calculated with CCONE code /7/. MT= 22 (n,na) cross section Calculated with CCONE code /7/. MT= 24 (n,2na) cross section Calculated with CCONE code /7/. MT= 28 (n,np) cross section Calculated with CCONE code /7/. MT= 32 (n,nd) cross section Calculated with CCONE code /7/. MT= 33 (n,nt) cross section Calculated with CCONE code /7/. MT= 51-91 (n,n') cross section Calculated with CCONE code /7/. MT=102 Capture cross section Calculated with CCONE code /7/. MT=103 (n,p) cross section Calculated with CCONE code /7/. MT=104 (n,d) cross section Calculated with CCONE code /7/. MT=105 (n,t) cross section Calculated with CCONE code /7/. MT=106 (n,He3) cross section Calculated with CCONE code /7/. MT=107 (n,a) cross section Calculated with CCONE code /7/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /7/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /7/. MT= 17 (n,3n) reaction Calculated with CCONE code /7/. MT= 22 (n,na) reaction Calculated with CCONE code /7/. MT= 24 (n,2na) reaction Calculated with CCONE code /7/. MT= 28 (n,np) reaction Calculated with CCONE code /7/. MT= 32 (n,nd) reaction Calculated with CCONE code /7/. MT= 33 (n,nt) reaction Calculated with CCONE code /7/. MT= 51-91 (n,n') reaction Calculated with CCONE code /7/. MT=102 Capture reaction Calculated with CCONE code /7/. ***************************************************************** Nuclear Model Calculation with CCONE code /7/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,4,7,10 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./8/ (+) proton omp: Koning,A.J. and Delaroche,J.P./9/ deuteron omp: Lohr,J.M. and Haeberli,W./10/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/ alpha omp: McFadden,L. and Satchler,G.R./12/ (+) omp parameters were modified. 2) Two-component exciton model/13/ * Global parametrization of Koning-Duijvestijn/14/ was used. * Gamma emission channel/15/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/16/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/17/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/18/,/19/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Nd-150 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.13021 2 + * 2 0.38145 4 + * 3 0.67537 0 + 4 0.72040 6 + * 5 0.85066 2 + 6 0.85294 1 - 7 0.93486 3 - * 8 1.06195 2 + 9 1.12900 5 - 10 1.12970 8 + * 11 1.13780 4 + 12 1.18231 0 + 13 1.20063 3 + 14 1.25000 0 + 15 1.28391 1 - 16 1.30750 0 + 17 1.31800 1 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Nd-151 19.8000 0.9765 3.4048 0.5128 -1.0731 5.3158 Nd-150 20.0000 1.9596 3.4363 0.5263 -0.3405 6.6204 Nd-149 20.9000 0.9831 3.5199 0.4992 -1.1865 5.3955 Nd-148 21.1000 1.9728 2.8636 0.4784 0.2048 5.9010 Nd-147 19.7000 0.9897 2.4886 0.4934 -0.5694 4.7470 Pr-150 17.9970 0.0000 3.3122 0.4633 -1.0542 3.0000 Pr-149 17.2625 0.9831 3.6354 0.5953 -1.5169 6.0817 Pr-148 15.5000 0.0000 3.2403 0.6014 -1.8696 4.4395 Pr-147 17.0632 0.9897 3.0053 0.5856 -1.1357 5.6888 Ce-149 18.6229 0.9831 3.3637 0.3046 0.9683 1.9831 Ce-148 17.9032 1.9728 3.0589 0.5775 -0.3257 6.8383 Ce-147 18.4207 0.9897 2.8111 0.5589 -1.1482 5.6286 Ce-146 17.6964 1.9863 2.1733 0.5745 0.0448 6.5077 Ce-145 18.2180 0.9965 1.7406 0.5686 -0.8969 5.4793 Ce-144 17.4894 2.0000 1.0129 0.5822 0.3675 6.2813 -------------------------------------------------------- Table 3. Gamma-ray strength function for Nd-151 -------------------------------------------------------- K0 = 1.800 E0 = 4.500 (MeV) * E1: ER = 12.66 (MeV) EG = 3.31 (MeV) SIG = 123.94 (mb) ER = 16.13 (MeV) EG = 5.27 (MeV) SIG = 247.88 (mb) * M1: ER = 7.70 (MeV) EG = 4.00 (MeV) SIG = 1.14 (mb) * E2: ER = 11.83 (MeV) EG = 4.30 (MeV) SIG = 3.30 (mb) -------------------------------------------------------- References 1) Tellier, H.: CEA-N-1459 (1971). 2) Mughabghab, S.F. and Garber, D.I.: "Neutron Cross Sections, Vol.1, Resonance Parameters", BNL 325, 3rd ed., Vol. 1, (1973). 3) Fedorova, A.F., et al.: "Proc. 3rd All-union Conf. on Neutron Physics, Kiev 1975", Vol. 1, 169. 4) Barry, D.P., et al.: Nucl. Sci. Eng., 153, 8 (2006). 5) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 6) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 7) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 8) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 9) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 10) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 11) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 12) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 13) Kalbach,C.: Phys. Rev. C33, 818 (1986). 14) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 15) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 16) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 17) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 18) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 19) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).