61-Pm-148MJAEA EVAL-Dec09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6153 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,33,41,102-108) added MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonances RESOLVED RESONANCE REGION (SLBW FORMULA) : BELOW 0.6 EV PARAMETERS OF A SINGLE RESONANCE AT 0.169 EV WERE ADOPTED FROM MUGHABGHAB/1/ ASSUMING TO BE S-WAVE RESONANCE AND TOTAL SPIN OF 6.5. Unresolved resonance region : 0.6 eV - 100.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /2/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /3/ and CCONE /4/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 1.0670e+04 Elastic 1.9369e+01 Inelas 8.4497e-02 n,gamma 1.0650e+04 4.1961e+03 n,p 6.1921e-11 n,alpha 7.0448e-01 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 24 (n,2na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT= 32 (n,nd) cross section Calculated with CCONE code /4/. MT= 33 (n,nt) cross section Calculated with CCONE code /4/. MT= 41 (n,2np) cross section Calculated with CCONE code /4/. MT= 51-91 (n,n') cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. MT=103 (n,p) cross section Calculated with CCONE code /4/. MT=104 (n,d) cross section Calculated with CCONE code /4/. MT=105 (n,t) cross section Calculated with CCONE code /4/. MT=106 (n,He3) cross section Calculated with CCONE code /4/. MT=107 (n,a) cross section Calculated with CCONE code /4/. MT=108 (n,2a) cross section Calculated with CCONE code /4/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 24 (n,2na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 33 (n,nt) reaction Calculated with CCONE code /4/. MT= 41 (n,2np) reaction Calculated with CCONE code /4/. MT= 51-91 (n,n') reaction Calculated with CCONE code /4/. MT=102 Capture reaction Calculated with CCONE code /4/. ***************************************************************** Nuclear Model Calculation with CCONE code /4/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 3,16 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./5/ (+) proton omp: Koning,A.J. and Delaroche,J.P./6/ deuteron omp: Lohr,J.M. and Haeberli,W./7/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ alpha omp: Huizenga,J.R. and Igo,G./9/ (+) omp parameters were modified. 2) Two-component exciton model/10/ * Global parametrization of Koning-Duijvestijn/11/ was used. * Gamma emission channel/12/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/13/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/14/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/15/,/16/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Pm-148 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 1 - 1 0.07570 2 - 2 0.13720 3 - 3 0.13790 6 - * 4 0.21530 6 - 5 0.21990 3 + 6 0.29200 6 + 7 0.30290 4 + 8 0.30470 2 - 9 0.30890 6 + 10 0.36340 7 + 11 0.37970 7 + 12 0.38530 7 + 13 0.38810 6 + 14 0.40960 6 - 15 0.41350 6 + 16 0.44010 7 - * 17 0.45200 7 + 18 0.46200 4 - 19 0.52640 5 - 20 0.52940 4 + 21 0.54340 6 + 22 0.54570 7 - 23 0.55030 6 + 24 0.56130 7 + 25 0.56420 5 - 26 0.57310 7 + 27 0.61120 8 + 28 0.62270 7 + 29 0.64190 6 - 30 0.65570 5 - 31 0.66050 6 - 32 0.66950 7 - 33 0.67290 7 + 34 0.70000 7 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Pm-149 17.2625 0.9831 3.6138 0.5926 -1.4731 6.0264 Pm-148 18.3000 0.0000 2.8623 0.4670 -1.0648 3.0412 Pm-147 17.0632 0.9897 2.3331 0.6101 -1.2455 5.9682 Pm-146 17.5893 0.0000 1.5389 0.5962 -1.9822 4.7135 Pm-145 16.8637 0.9965 0.9449 0.5991 -0.6199 5.3282 Nd-148 21.1000 1.9728 2.8636 0.4784 0.2048 5.9010 Nd-147 19.7000 0.9897 2.4886 0.4934 -0.5694 4.7470 Nd-146 18.1900 1.9863 1.6792 0.5692 0.1138 6.4542 Nd-145 18.5400 0.9965 1.1101 0.5235 -0.2928 4.6189 Nd-144 17.5000 2.0000 0.3419 0.6111 0.2496 6.6190 Pr-147 17.0632 0.9897 3.0053 0.5856 -1.1357 5.6888 Pr-146 17.5893 0.0000 2.4188 0.5462 -1.6453 4.0472 Pr-145 16.8637 0.9965 1.7883 0.6002 -0.8883 5.5766 Pr-144 15.5000 0.0000 0.9153 0.6715 -1.9662 5.0412 Pr-143 16.6639 1.0035 0.4682 0.6161 -0.5920 5.4208 Pr-142 16.4000 0.0000 -0.4377 0.7390 -2.6336 6.4135 Pr-141 16.4637 1.0106 -1.2280 0.6590 -0.3966 5.5793 -------------------------------------------------------- Table 3. Gamma-ray strength function for Pm-149 -------------------------------------------------------- K0 = 2.000 E0 = 4.500 (MeV) * E1: ER = 12.96 (MeV) EG = 3.47 (MeV) SIG = 122.75 (mb) ER = 15.98 (MeV) EG = 5.17 (MeV) SIG = 245.51 (mb) * M1: ER = 7.73 (MeV) EG = 4.00 (MeV) SIG = 1.23 (mb) * E2: ER = 11.88 (MeV) EG = 4.32 (MeV) SIG = 3.44 (mb) -------------------------------------------------------- References 1) MUGHABGHAB,S.F.: "NEUTRON CROSS SECTIONS, VOL. I, PART B", ACADEMIC PRESS (1984). 2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 3) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 10) Kalbach,C.: Phys. Rev. C33, 818 (1986). 11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).