61-Pm-151 JAEA EVAL-Dec09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6161 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,33,41,102-107) added MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonances No resolved resonance parameters Unresolved resonance region : 2.4 eV - 100.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /1/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /2/ and CCONE /3/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 5.0747e+02 Elastic 7.0239e+00 n,gamma 5.0020e+02 1.2609e+03 n,alpha 3.2328e-10 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /3/. MT= 16 (n,2n) cross section Calculated with CCONE code /3/. MT= 17 (n,3n) cross section Calculated with CCONE code /3/. MT= 22 (n,na) cross section Calculated with CCONE code /3/. MT= 24 (n,2na) cross section Calculated with CCONE code /3/. MT= 28 (n,np) cross section Calculated with CCONE code /3/. MT= 32 (n,nd) cross section Calculated with CCONE code /3/. MT= 33 (n,nt) cross section Calculated with CCONE code /3/. MT= 41 (n,2np) cross section Calculated with CCONE code /3/. MT= 51-91 (n,n') cross section Calculated with CCONE code /3/. MT=102 Capture cross section Calculated with CCONE code /3/. MT=103 (n,p) cross section Calculated with CCONE code /3/. MT=104 (n,d) cross section Calculated with CCONE code /3/. MT=105 (n,t) cross section Calculated with CCONE code /3/. MT=106 (n,He3) cross section Calculated with CCONE code /3/. MT=107 (n,a) cross section Calculated with CCONE code /3/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /3/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /3/. MT= 17 (n,3n) reaction Calculated with CCONE code /3/. MT= 22 (n,na) reaction Calculated with CCONE code /3/. MT= 24 (n,2na) reaction Calculated with CCONE code /3/. MT= 28 (n,np) reaction Calculated with CCONE code /3/. MT= 32 (n,nd) reaction Calculated with CCONE code /3/. MT= 33 (n,nt) reaction Calculated with CCONE code /3/. MT= 41 (n,2np) reaction Calculated with CCONE code /3/. MT= 51-91 (n,n') reaction Calculated with CCONE code /3/. MT=102 Capture reaction Calculated with CCONE code /3/. ***************************************************************** Nuclear Model Calculation with CCONE code /3/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,4,8,12,23,35 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./4/ (+) proton omp: Koning,A.J. and Delaroche,J.P./5/ deuteron omp: Lohr,J.M. and Haeberli,W./6/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/ alpha omp: Huizenga,J.R. and Igo,G./8/ (+) omp parameters were modified. 2) Two-component exciton model/9/ * Global parametrization of Koning-Duijvestijn/10/ was used. * Gamma emission channel/11/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/12/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/13/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/14/,/15/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Pm-151 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 5/2 + * 1 0.08512 7/2 + * 2 0.11679 5/2 - 3 0.17508 7/2 - 4 0.19727 9/2 + * 5 0.25569 3/2 + 6 0.26116 9/2 - 7 0.32468 5/2 + 8 0.32960 11/2 + * 9 0.34380 11/2 - 10 0.42645 1/2 + 11 0.42715 7/2 + 12 0.48670 13/2 + * 13 0.49750 13/2 - 14 0.50789 5/2 + 15 0.52434 3/2 + 16 0.53206 7/2 - 17 0.54037 3/2 - 18 0.55200 9/2 + 19 0.57740 5/2 - 20 0.59600 9/2 - 21 0.59710 15/2 - 22 0.64010 11/2 - 23 0.65760 15/2 + * 24 0.70100 11/2 + 25 0.71920 7/2 + 26 0.74655 3/2 - 27 0.75557 5/2 + 28 0.77360 3/2 - 29 0.78100 7/2 + 30 0.80946 7/2 - 31 0.82750 17/2 - 32 0.84097 3/2 + 33 0.85230 1/2 + 34 0.85299 5/2 + 35 0.85390 17/2 + * 36 0.86600 13/2 + 37 0.87058 7/2 - 38 0.87471 3/2 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Pm-152 18.2003 0.0000 3.4439 0.4590 -1.0726 3.0071 Pm-151 17.4614 0.9765 3.7662 0.5765 -1.3653 5.8316 Pm-150 17.9970 0.0000 4.0234 0.4210 -0.7878 2.5000 Pm-149 17.2625 0.9831 3.6138 0.5926 -1.4731 6.0264 Nd-151 19.8000 0.9765 3.4048 0.5128 -1.0731 5.3158 Nd-150 20.0000 1.9596 3.4363 0.5263 -0.3405 6.6204 Nd-149 20.9000 0.9831 3.5199 0.4992 -1.1865 5.3955 Nd-148 21.1000 1.9728 2.8636 0.4784 0.2048 5.9010 Nd-147 19.7000 0.9897 2.4886 0.4934 -0.5694 4.7470 Pr-150 17.9970 0.0000 3.3122 0.4633 -1.0542 3.0000 Pr-149 17.2625 0.9831 3.6354 0.5953 -1.5169 6.0817 Pr-148 15.5000 0.0000 3.2403 0.6014 -1.8696 4.4395 Pr-147 17.0632 0.9897 3.0053 0.5856 -1.1357 5.6888 Pr-146 17.5893 0.0000 2.4188 0.5462 -1.6453 4.0472 Pr-145 16.8637 0.9965 1.7883 0.6002 -0.8883 5.5766 -------------------------------------------------------- Table 3. Gamma-ray strength function for Pm-152 -------------------------------------------------------- K0 = 2.000 E0 = 4.500 (MeV) * E1: ER = 12.57 (MeV) EG = 3.27 (MeV) SIG = 125.54 (mb) ER = 16.16 (MeV) EG = 5.29 (MeV) SIG = 251.08 (mb) * M1: ER = 7.68 (MeV) EG = 4.00 (MeV) SIG = 1.26 (mb) * E2: ER = 11.80 (MeV) EG = 4.29 (MeV) SIG = 3.40 (mb) -------------------------------------------------------- References 1) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 2) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 3) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 4) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 5) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 6) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 7) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 8) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 9) Kalbach,C.: Phys. Rev. C33, 818 (1986). 10) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 11) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 12) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 13) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 14) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 15) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).