62-Sm-144 JAEA EVAL-Nov09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6225 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,28,32,44,102-108,111,112,115) JENDL/AD-2017 adopted (MF9/MT107,108) JENDL/AD-2017 adopted (MF10/MT16) JENDL/AD-2017 based MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 resolved and unresolved resonance parameters THE RESOLVED RESONANCE PARAMETERS WERE EVALUATED ON THE BASIS OF THE DATA RECENTLY MEASURED BY MACKLIN ET AL./1/ FOR RESONANCES WHOSE NEUTRON WIDTH WAS NOT MEASURED, THE NEUTRON WIDTH WAS OBTAINED FROM THE CAPTURE AREA ASSUMING THE RADIATION WIDTH OF 0.074 EV AND 0.089 EV FOR THE S-WAVE AND P-WAVE RESONANCES, RESPECTIVELY. FOR P-WAVE RESONANCES, THE VALUE OF THE TOTAL SPIN J WAS ARBITRARILY ASSIGNED WITH THE RATIO 1:2 IN THE NUMBER OF THE RESONANCES WITH J=1/2 AND J=3/2. TO REPRODUCE THE THERMAL CROSS SECTION OF 1.64+-0.10 B AT 0.0253 EV/2/, A NEGATIVE RESONANCE WAS ADDED AT -104 EV. THE EFFECTIVE SCATTERING RADIUS WAS EMPLOYED FROM THE MEASURED DATA BY MACKLIN ET AL./1/ Unresolved resonance region : 10.0 keV - 160.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /3/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /4/ and CCONE /5/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 2.4027e+00 Elastic 7.6157e-01 n,gamma 1.6411e+00 1.8549e+00 n,alpha 3.0297e-05 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /5/. MT= 16 (n,2n) cross section Calculated with CCONE code /5/. MT= 17 (n,3n) cross section Calculated with CCONE code /5/. MT= 22 (n,na) cross section Calculated with CCONE code /5/. MT= 28 (n,np) cross section Calculated with CCONE code /5/. MT= 32 (n,nd) cross section Calculated with CCONE code /5/. MT= 44 (n,n2p) cross section Calculated with CCONE code /5/. MT= 51-91 (n,n') cross section Calculated with CCONE code /5/. MT=102 Capture cross section Calculated with CCONE code /5/. MT=103 (n,p) cross section Calculated with CCONE code /5/. MT=104 (n,d) cross section Calculated with CCONE code /5/. MT=105 (n,t) cross section Calculated with CCONE code /5/. MT=106 (n,He3) cross section Calculated with CCONE code /5/. MT=107 (n,a) cross section Calculated with CCONE code /5/. MT=108 (n,2a) cross section Calculated with CCONE code /5/. MT=111 (n,2p) cross section Calculated with CCONE code /5/. MT=112 (n,pa) cross section Calculated with CCONE code /5/. MT=115 (n,pd) cross section Calculated with CCONE code /5/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /5/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /5/. MT= 17 (n,3n) reaction Calculated with CCONE code /5/. MT= 22 (n,na) reaction Calculated with CCONE code /5/. MT= 28 (n,np) reaction Calculated with CCONE code /5/. MT= 32 (n,nd) reaction Calculated with CCONE code /5/. MT= 44 (n,n2p) reaction Calculated with CCONE code /5/. MT= 51-91 (n,n') reaction Calculated with CCONE code /5/. MT=102 Capture reaction Calculated with CCONE code /5/. MT=108 (n,2a) reaction Calculated with CCONE code /5/. MT=111 (n,2p) reaction Calculated with CCONE code /5/. MT=112 (n,pa) reaction Calculated with CCONE code /5/. MT=115 (n,pd) reaction Calculated with CCONE code /5/. ***************************************************************** Nuclear Model Calculation with CCONE code /5/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,5,6 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./6/ (+) proton omp: Koning,A.J. and Delaroche,J.P./7/ deuteron omp: Lohr,J.M. and Haeberli,W./8/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/ alpha omp: McFadden,L. and Satchler,G.R./10/ (+) (+) omp parameters were modified. 2) Two-component exciton model/11/ * Global parametrization of Koning-Duijvestijn/12/ was used. * Gamma emission channel/13/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/14/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/15/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /16/,/17/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Sm-144 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 1.66003 2 + * 2 1.81017 3 - 3 2.12000 0 + 4 2.16700 3 - 5 2.19089 4 + * 6 2.32360 6 + * 7 2.42321 2 + 8 2.47765 0 + 9 2.58778 4 + 10 2.64470 1 + 11 2.66069 2 + 12 2.68839 3 + 13 2.70704 5 + 14 2.72900 1 + 15 2.79965 2 + 16 2.80400 2 + 17 2.82252 0 + 18 2.82571 5 - 19 2.82700 0 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Sm-145 16.2400 0.9965 -0.2231 0.5462 0.3438 3.9136 Sm-144 16.1000 2.0000 -1.0862 0.6960 0.2760 7.1522 Sm-143 20.5000 1.0035 -0.2532 0.3689 0.8950 2.4246 Sm-142 17.2820 2.0140 0.2631 0.5569 0.9064 5.5796 Pm-144 17.3850 0.0000 -0.0322 0.6228 -1.7232 4.6797 Pm-143 16.6639 1.0035 -0.8001 0.5676 0.2359 4.2170 Pm-142 17.1803 0.0000 -0.2854 0.5225 -0.6526 2.8315 Pm-141 16.4637 1.0106 0.6651 0.6120 -0.5464 5.3348 Nd-143 17.7000 1.0035 -0.4179 0.5516 0.0353 4.4179 Nd-142 15.0000 2.0140 -1.2557 0.6895 0.7987 6.4278 Nd-141 17.8113 1.0106 -0.4633 0.5388 0.1405 4.2362 Nd-140 17.0742 2.0284 0.1378 0.5639 0.9372 5.6042 Nd-139 17.6073 1.0178 0.9560 0.5563 -0.3594 4.8725 -------------------------------------------------------- Table 3. Gamma-ray strength function for Sm-145 -------------------------------------------------------- * E1: ER = 14.92 (MeV) EG = 4.54 (MeV) SIG = 358.40 (mb) * M1: ER = 7.80 (MeV) EG = 4.00 (MeV) SIG = 0.67 (mb) * E2: ER = 11.99 (MeV) EG = 4.37 (MeV) SIG = 3.61 (mb) -------------------------------------------------------- References 1) MACKLIN,R.L. ET AL.: PHYS. REV., C48, 1120 (1993). 2) ALEXANDER,C.W. ET AL.: NUCL. SCI. ENG., 95, 194 (1987). 3) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 4) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 5) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 6) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 7) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 8) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 9) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 10) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 11) Kalbach,C.: Phys. Rev. C33, 818 (1986). 12) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 13) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 14) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 15) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 16) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 17) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).