62-Sm-147 JAEA+ EVAL-Nov09 N.Iwamoto,A.Zukeran DIST-DEC21 20100330 ----JENDL-5 MATERIAL 6234 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 The resolved resonance parameters were evaluated by A.Zukeran. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,33,41,102-107) JENDL/AD-2017 adopted MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 resolved and unresolved resonance parameters Resolved resonance region (MLBW formula): below 1.20 keV For JENDL-2, the data of Mizumoto/1/ were adopted. The J-assignment was based on Kviteck and Popov/2/, Cauvin et al./3/ and Karzhavina et al./4/ Orbital angular momentum L was assumed to be 0 for all resonances. Average radiation width and scattering radius were taken from Mughabghab/5/. For JENDL-3, total spin j of some resonances was tentatively estimated with a random number method. Parameters of a negative resonance were modified so as to reproduce the thermal capture cross section given by Mughabghab. In JENDL-4, the radiation widths for 27.16 - 290.1 eV were replaced with the ones obatained by Georgiev et al./6/ Unresolved resonance region : 1.2 keV - 150.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /7/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /8/ and CCONE /9/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 6.4249e+01 Elastic 7.2216e+00 n,gamma 5.7026e+01 7.9599e+02 n,alpha 5.7759e-04 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /9/. MT= 16 (n,2n) cross section Calculated with CCONE code /9/. MT= 17 (n,3n) cross section Calculated with CCONE code /9/. MT= 22 (n,na) cross section Calculated with CCONE code /9/. MT= 24 (n,2na) cross section Calculated with CCONE code /9/. MT= 28 (n,np) cross section Calculated with CCONE code /9/. MT= 32 (n,nd) cross section Calculated with CCONE code /9/. MT= 33 (n,nt) cross section Calculated with CCONE code /9/. MT= 41 (n,2np) cross section Calculated with CCONE code /9/. MT= 51-91 (n,n') cross section Calculated with CCONE code /9/. MT=102 Capture cross section Calculated with CCONE code /9/. MT=103 (n,p) cross section Calculated with CCONE code /9/. MT=104 (n,d) cross section Calculated with CCONE code /9/. MT=105 (n,t) cross section Calculated with CCONE code /9/. MT=106 (n,He3) cross section Calculated with CCONE code /9/. MT=107 (n,a) cross section Calculated with CCONE code /9/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /9/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /9/. MT= 17 (n,3n) reaction Calculated with CCONE code /9/. MT= 22 (n,na) reaction Calculated with CCONE code /9/. MT= 24 (n,2na) reaction Calculated with CCONE code /9/. MT= 28 (n,np) reaction Calculated with CCONE code /9/. MT= 32 (n,nd) reaction Calculated with CCONE code /9/. MT= 33 (n,nt) reaction Calculated with CCONE code /9/. MT= 41 (n,2np) reaction Calculated with CCONE code /9/. MT= 51-91 (n,n') reaction Calculated with CCONE code /9/. MT=102 Capture reaction Calculated with CCONE code /9/. ***************************************************************** Nuclear Model Calculation with CCONE code /9/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,3,6,34 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./10/ (+) proton omp: Koning,A.J. and Delaroche,J.P./11/ deuteron omp: Lohr,J.M. and Haeberli,W./12/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./13/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./13/ alpha omp: McFadden,L. and Satchler,G.R./14/ (+) (+) omp parameters were modified. 2) Two-component exciton model/15/ * Global parametrization of Koning-Duijvestijn/16/ was used. * Gamma emission channel/17/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/18/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/19/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /20/,/21/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Sm-147 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 7/2 - * 1 0.12122 5/2 - * 2 0.19740 3/2 - 3 0.71660 11/2 - * 4 0.72000 1/2 + 5 0.79920 3/2 - 6 0.80930 9/2 - * 7 0.88400 1/2 + 8 0.90000 7/2 - 9 0.92280 1/2 - 10 0.93160 11/2 - 11 0.97800 1/2 + 12 1.02000 9/2 - 13 1.03070 13/2 + 14 1.04350 3/2 - 15 1.05430 3/2 + 16 1.06390 5/2 + 17 1.06905 9/2 - 18 1.07700 5/2 - 19 1.10686 9/2 + 20 1.16200 11/2 + 21 1.16900 1/2 - 22 1.17300 11/2 + 23 1.18010 9/2 - 24 1.22130 1/2 + 25 1.25800 7/2 + 26 1.31767 3/2 + 27 1.31785 11/2 - 28 1.31807 7/2 + 29 1.34965 7/2 - 30 1.43000 3/2 - 31 1.43800 9/2 + 32 1.44911 11/2 - 33 1.45321 3/2 - 34 1.45840 15/2 - * 35 1.46400 11/2 - 36 1.47141 3/2 - 37 1.47188 3/2 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Sm-148 18.4000 1.9728 2.0339 0.5337 0.3686 5.9610 Sm-147 18.4207 0.9897 1.4097 0.5385 -0.5090 4.9131 Sm-146 17.6964 1.9863 0.5792 0.5450 0.8159 5.5739 Sm-145 16.2400 0.9965 -0.2231 0.5462 0.3438 3.9136 Pm-147 17.0632 0.9897 2.3331 0.6101 -1.2455 5.9682 Pm-146 17.5893 0.0000 1.5389 0.5962 -1.9822 4.7135 Pm-145 16.8637 0.9965 0.9449 0.5991 -0.6199 5.3282 Pm-144 17.3850 0.0000 -0.0322 0.6228 -1.7232 4.6797 Nd-146 18.1900 1.9863 1.6792 0.5692 0.1138 6.4542 Nd-145 18.5400 0.9965 1.1101 0.5235 -0.2928 4.6189 Nd-144 17.5000 2.0000 0.3419 0.6111 0.2496 6.6190 Nd-143 17.7000 1.0035 -0.4179 0.5516 0.0353 4.4179 Nd-142 15.0000 2.0140 -1.2557 0.6895 0.7987 6.4278 Nd-141 17.8113 1.0106 -0.4633 0.5388 0.1405 4.2362 -------------------------------------------------------- Table 3. Gamma-ray strength function for Sm-148 -------------------------------------------------------- * E1: ER = 14.82 (MeV) EG = 5.09 (MeV) SIG = 339.00 (mb) * M1: ER = 7.75 (MeV) EG = 4.00 (MeV) SIG = 0.80 (mb) * E2: ER = 11.91 (MeV) EG = 4.33 (MeV) SIG = 3.57 (mb) -------------------------------------------------------- References 1) Mizumoto, M.: Nucl. Phys., A357, 90 (1981). 2) Kviteck, J., Popov, Ju.P.: Nucl. Phys., A154, 177 (1970). 3) Cauvin, B., et al.: "Proc. 3rd Conf on Neutron Cross Sections and Technol., Knoxville 1971", 785. 4) Karzhavina, E.N., et al.: JINR-P3-6237 (1972). 5) Mughabghab, S.F.: "Neutron Cross Sections, Vol. I, Part B", Academic Press (1984). 6) Georgiev, G., et al.: Nucl. Phys., A565, 643 (1993). 7) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 8) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 9) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 10) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 11) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 12) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 13) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 14) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 15) Kalbach,C.: Phys. Rev. C33, 818 (1986). 16) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 17) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 18) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 19) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 20) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 21) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).