62-Sm-148 JAEA+ EVAL-Nov09 N.Iwamoto,A.Zukeran DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6237 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 The resolved resonance parameters were evaluated by A.Zukeran. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,25,28,32,33,41,102-105,107) JENDL/AD-2017 adopted (MF8/MT106) added (MF10/MT103) JENDL/AD-2017 based MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 5.5 keV In JENDL-3.3, resonance parameters were evaluated on the basis of the data measured by Mizumoto and Zhao/1,2/. Resonance energies and neutron widths were taken from the transmission measurments by Mizumoto and zhao. Radiation width of 0.06 eV used for their analysis was adopted. A negative resonance was added so as to reproduce the thermal capture cross section given by Mughabghab/3/. In JENDL-4, the data for 94.9 - 1478 eV were replaced with the ones obtained by Georgiev et al./4/ The parameters for the negative resonance were re-adjusted. Unresolved resonance region : 5.5 keV - 150.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /5/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /6/ and CCONE /7/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 3.5952e+00 Elastic 1.2058e+00 n,gamma 2.3894e+00 4.3486e+01 n,alpha 1.2767e-05 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /7/. MT= 16 (n,2n) cross section Calculated with CCONE code /7/. MT= 17 (n,3n) cross section Calculated with CCONE code /7/. MT= 22 (n,na) cross section Calculated with CCONE code /7/. MT= 24 (n,2na) cross section Calculated with CCONE code /7/. MT= 25 (n,3na) cross section Calculated with CCONE code /7/. MT= 28 (n,np) cross section Calculated with CCONE code /7/. MT= 32 (n,nd) cross section Calculated with CCONE code /7/. MT= 33 (n,nt) cross section Calculated with CCONE code /7/. MT= 41 (n,2np) cross section Calculated with CCONE code /7/. MT= 51-91 (n,n') cross section Calculated with CCONE code /7/. MT=102 Capture cross section Calculated with CCONE code /7/. MT=103 (n,p) cross section Calculated with CCONE code /7/. MT=104 (n,d) cross section Calculated with CCONE code /7/. MT=105 (n,t) cross section Calculated with CCONE code /7/. MT=106 (n,He3) cross section Calculated with CCONE code /7/. MT=107 (n,a) cross section Calculated with CCONE code /7/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /7/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /7/. MT= 17 (n,3n) reaction Calculated with CCONE code /7/. MT= 22 (n,na) reaction Calculated with CCONE code /7/. MT= 24 (n,2na) reaction Calculated with CCONE code /7/. MT= 25 (n,3na) reaction Calculated with CCONE code /7/. MT= 28 (n,np) reaction Calculated with CCONE code /7/. MT= 32 (n,nd) reaction Calculated with CCONE code /7/. MT= 33 (n,nt) reaction Calculated with CCONE code /7/. MT= 41 (n,2np) reaction Calculated with CCONE code /7/. MT= 51-91 (n,n') reaction Calculated with CCONE code /7/. MT=102 Capture reaction Calculated with CCONE code /7/. ***************************************************************** Nuclear Model Calculation with CCONE code /7/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,3 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./8/ (+) proton omp: Koning,A.J. and Delaroche,J.P./9/ (+) deuteron omp: Lohr,J.M. and Haeberli,W./10/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/ alpha omp: McFadden,L. and Satchler,G.R./12/ (+) omp parameters were modified. 2) Two-component exciton model/13/ * Global parametrization of Koning-Duijvestijn/14/ was used. * Gamma emission channel/15/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/16/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/17/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/18/,/19/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Sm-148 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.55026 2 + * 2 1.16153 3 - 3 1.18026 4 + * 4 1.42446 0 + 5 1.43400 3 + 6 1.45411 2 + 7 1.46110 1 - 8 1.46514 1 - 9 1.59425 5 - 10 1.65940 4 + 11 1.66428 2 + 12 1.71780 1 - 13 1.73346 4 + 14 1.89482 4 + 15 1.90377 3 + 16 1.90591 6 + 17 1.92097 0 + 18 1.97248 2 + 19 2.03140 4 - 20 2.04100 5 + 21 2.05796 2 - 22 2.09559 6 + 23 2.11105 4 + 24 2.12864 7 - 25 2.14250 3 - 26 2.14635 2 + 27 2.14750 5 + 28 2.19406 6 + 29 2.20499 0 + 30 2.20885 2 + 31 2.21422 5 + 32 2.22804 4 + 33 2.27700 1 + 34 2.28441 1 - 35 2.31357 2 + 36 2.31850 2 + 37 2.32709 4 + 38 2.32762 3 + 39 2.33921 3 - 40 2.34400 3 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Sm-149 19.2000 0.9831 2.9030 0.5042 -0.6887 4.8887 Sm-148 18.4000 1.9728 2.0339 0.5337 0.3686 5.9610 Sm-147 18.4207 0.9897 1.4097 0.5385 -0.5090 4.9131 Sm-146 17.6964 1.9863 0.5792 0.5450 0.8159 5.5739 Pm-148 18.3000 0.0000 2.8623 0.4670 -1.0648 3.0412 Pm-147 17.0632 0.9897 2.3331 0.6101 -1.2455 5.9682 Pm-146 17.5893 0.0000 1.5389 0.5962 -1.9822 4.7135 Pm-145 16.8637 0.9965 0.9449 0.5991 -0.6199 5.3282 Nd-147 19.7000 0.9897 2.4886 0.4934 -0.5694 4.7470 Nd-146 18.1900 1.9863 1.6792 0.5692 0.1138 6.4542 Nd-145 18.5400 0.9965 1.1101 0.5235 -0.2928 4.6189 Nd-144 17.5000 2.0000 0.3419 0.6111 0.2496 6.6190 Nd-143 17.7000 1.0035 -0.4179 0.5516 0.0353 4.4179 Nd-142 15.0000 2.0140 -1.2557 0.6895 0.7987 6.4278 -------------------------------------------------------- Table 3. Gamma-ray strength function for Sm-149 -------------------------------------------------------- K0 = 1.660 E0 = 4.500 (MeV) * E1: ER = 13.24 (MeV) EG = 3.61 (MeV) SIG = 123.35 (mb) ER = 15.77 (MeV) EG = 5.05 (MeV) SIG = 246.70 (mb) * M1: ER = 7.73 (MeV) EG = 4.00 (MeV) SIG = 1.04 (mb) * E2: ER = 11.88 (MeV) EG = 4.32 (MeV) SIG = 3.55 (mb) -------------------------------------------------------- References 1) Mizumoto, M. and Zhao, W.R.: JAERI-M 86-112, 168 (1986). 2) Zhao, W.R. and Mizumoto, M.: private communication (1986). 3) Mughabghab, S.F.: "Neutron Cross Sections, Vol. I, Part B", Academic Press (1984). 4) Georgiev, G., et al.: Nucl. Phys., A565, 643 (1993). 5) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 6) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 7) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 8) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 9) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 10) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 11) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 12) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 13) Kalbach,C.: Phys. Rev. C33, 818 (1986). 14) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 15) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 16) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 17) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 18) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 19) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).