62-Sm-149 JAEA+ EVAL-Nov09 N.Iwamoto,A.Zukeran DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6240 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 The resolved resonance parameters were evaluated by A.Zukeran. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,33,41,102-105,107) JENDL/AD-2017 adopted (MF8/MT106) added (MF10/MT28,104) JENDL/AD-2017 based MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 0.52 keV Parameters of the lowest 2 levels were evaluated on the basis of data measured by Akyuez et al./1/, Asami et al. /2/ and Pattenden/3/. The data of Mizumoto/4/ were adopted for other resonances. The J values were determined according to Marshak/5/, Cauvin et al./6/, Karzhavina et al./7/ and Becvar et al./8/ Radiation widths have been measured for seven resonances and their average value of 62 meV was used as a recommended value. For jendl-3, total spin J of some resonances was tentatively estimated with a random number method. The parameters of the 1st level were modified so as to reproduce the thermal capture cross section and resonance integral /9/. In JENDL-4, the radiations widths for 25.26 - 263.2 eV were replaced with those obtained by Georgiev et al./10/ Unresolved resonance region : 520.0 eV - 120.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /11/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /12/ and CCONE /13/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 4.0723e+04 Elastic 1.7884e+02 n,gamma 4.0544e+04 3.5174e+03 n,alpha 3.1173e-02 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /13/. MT= 16 (n,2n) cross section Calculated with CCONE code /13/. MT= 17 (n,3n) cross section Calculated with CCONE code /13/. MT= 22 (n,na) cross section Calculated with CCONE code /13/. MT= 24 (n,2na) cross section Calculated with CCONE code /13/. MT= 28 (n,np) cross section Calculated with CCONE code /13/. MT= 32 (n,nd) cross section Calculated with CCONE code /13/. MT= 33 (n,nt) cross section Calculated with CCONE code /13/. MT= 41 (n,2np) cross section Calculated with CCONE code /13/. MT= 51-91 (n,n') cross section Calculated with CCONE code /13/. MT=102 Capture cross section Calculated with CCONE code /13/. MT=103 (n,p) cross section Calculated with CCONE code /13/. MT=104 (n,d) cross section Calculated with CCONE code /13/. MT=105 (n,t) cross section Calculated with CCONE code /13/. MT=106 (n,He3) cross section Calculated with CCONE code /13/. MT=107 (n,a) cross section Calculated with CCONE code /13/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /13/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /13/. MT= 17 (n,3n) reaction Calculated with CCONE code /13/. MT= 22 (n,na) reaction Calculated with CCONE code /13/. MT= 24 (n,2na) reaction Calculated with CCONE code /13/. MT= 28 (n,np) reaction Calculated with CCONE code /13/. MT= 32 (n,nd) reaction Calculated with CCONE code /13/. MT= 33 (n,nt) reaction Calculated with CCONE code /13/. MT= 41 (n,2np) reaction Calculated with CCONE code /13/. MT= 51-91 (n,n') reaction Calculated with CCONE code /13/. MT=102 Capture reaction Calculated with CCONE code /13/. ***************************************************************** Nuclear Model Calculation with CCONE code /13/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,3,11,14 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./14/ (+) proton omp: Koning,A.J. and Delaroche,J.P./15/ deuteron omp: Lohr,J.M. and Haeberli,W./16/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./17/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./17/ alpha omp: McFadden,L. and Satchler,G.R./18/ (+) (+) omp parameters were modified. 2) Two-component exciton model/19/ * Global parametrization of Koning-Duijvestijn/20/ was used. * Gamma emission channel/21/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/22/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/23/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/24/,/25/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Sm-149 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 7/2 - * 1 0.02251 5/2 - 2 0.27708 5/2 - 3 0.28594 9/2 - * 4 0.35004 3/2 - 5 0.39909 1/2 - 6 0.52860 3/2 - 7 0.55837 5/2 - 8 0.59089 9/2 - 9 0.63646 7/2 - 10 0.65860 5/2 + 11 0.66405 11/2 - * 12 0.69700 3/2 - 13 0.70986 3/2 - 14 0.74755 13/2 - * 15 0.78523 5/2 - 16 0.78947 11/2 + 17 0.83041 9/2 - 18 0.83323 7/2 + 19 0.83559 7/2 - 20 0.87864 13/2 + 21 0.88194 7/2 - 22 0.92548 5/2 + 23 0.95278 5/2 + 24 0.96700 1/2 + 25 0.99460 11/2 + 26 1.01200 1/2 + 27 1.03900 5/2 - 28 1.04800 3/2 + 29 1.08300 1/2 + 30 1.11300 1/2 + 31 1.12300 1/2 + 32 1.13245 1/2 + 33 1.15400 1/2 + 34 1.17320 1/2 + 35 1.18100 1/2 + 36 1.18700 5/2 - 37 1.19272 13/2 + 38 1.19500 1/2 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033 Sm-149 19.2000 0.9831 2.9030 0.5042 -0.6887 4.8887 Sm-148 18.4000 1.9728 2.0339 0.5337 0.3686 5.9610 Sm-147 18.4207 0.9897 1.4097 0.5385 -0.5090 4.9131 Pm-149 17.2625 0.9831 3.6138 0.5926 -1.4731 6.0264 Pm-148 18.3000 0.0000 2.8623 0.4670 -1.0648 3.0412 Pm-147 17.0632 0.9897 2.3331 0.6101 -1.2455 5.9682 Pm-146 17.5893 0.0000 1.5389 0.5962 -1.9822 4.7135 Pm-145 16.8637 0.9965 0.9449 0.5991 -0.6199 5.3282 Nd-148 21.1000 1.9728 2.8636 0.4784 0.2048 5.9010 Nd-147 19.7000 0.9897 2.4886 0.4934 -0.5694 4.7470 Nd-146 18.1900 1.9863 1.6792 0.5692 0.1138 6.4542 Nd-145 18.5400 0.9965 1.1101 0.5235 -0.2928 4.6189 Nd-144 17.5000 2.0000 0.3419 0.6111 0.2496 6.6190 Nd-143 17.7000 1.0035 -0.4179 0.5516 0.0353 4.4179 Nd-142 15.0000 2.0140 -1.2557 0.6895 0.7987 6.4278 -------------------------------------------------------- Table 3. Gamma-ray strength function for Sm-150 -------------------------------------------------------- K0 = 1.660 E0 = 4.500 (MeV) * E1: ER = 14.61 (MeV) EG = 5.97 (MeV) SIG = 312.00 (mb) * M1: ER = 7.72 (MeV) EG = 4.00 (MeV) SIG = 1.64 (mb) * E2: ER = 11.86 (MeV) EG = 4.31 (MeV) SIG = 3.54 (mb) -------------------------------------------------------- References 1) Akyuez, OE.R., et al.: CNAEM-52 (1968). 2) Asami, T., et al.: J. Phys. Soc. Jpn., 26, 225 (1969). 3) Pattenden, N.J.: Nucl. Sci. Eng., 17, 371 (1963). 4) Mizumoto, M.: Nucl. Phys., A357, 90 (1981). 5) Marshak, H., et al.: Phys. Rev., 128, 1287 (1967). 6) Cauvin, B., et al.: "Proc. 3rd Conf. on Neutron Cross Sections and Technol., Knoxville 1971", 785. 7) Karzhavina, E.N., et al. JINER-P3-6237 (1972). 8) Becvar, F., et al.: Nucl. Phys., A236, 173 (1974). 9) Mughabghab, S.F.: "Neutron Cross Sections, Vol. I, Part B", Academic Press (1984). 10) Georgiev, G., et al.: Nucl. Phys., A565, 643 (1993). 11) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 12) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 13) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 14) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 15) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 16) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 17) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 18) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 19) Kalbach,C.: Phys. Rev. C33, 818 (1986). 20) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 21) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 22) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 23) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 24) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 25) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).