62-Sm-150 JAEA+ EVAL-Nov09 N.Iwamoto,A.Zukeran DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6243 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 The resolved resonance parameters were evaluated by A.Zukeran. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,33,102-105,107) JENDL/AD-2017 adopted (MF8/MT106) added (MF10/MT32,105) JENDL/AD-2017 based MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 1.538 keV Evaluation for JENDL-2 was made on the basis of the experimental data by Eiland et al./1/ and by Anufriev et al./2/ The average radiation width of 0.060 eV was assumed. A negative resonance was added at -3.5 eV so as to reproduce the capture cross section of 107+-9 barns and the total cross section of 122+-12 barns/1/. In JENDL-4, the data for 20.6 and 48.0 eV were taken from the work of Popov et al./3/ The parameters for the negative resonance were re-adjusted. Unresolved resonance region : 1.538 keV - 150.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /4/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /5/ and CCONE /6/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 1.0892e+02 Elastic 8.0289e+00 n,gamma 1.0090e+02 3.3100e+02 n,alpha 3.1028e-06 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /6/. MT= 16 (n,2n) cross section Calculated with CCONE code /6/. MT= 17 (n,3n) cross section Calculated with CCONE code /6/. MT= 22 (n,na) cross section Calculated with CCONE code /6/. MT= 24 (n,2na) cross section Calculated with CCONE code /6/. MT= 28 (n,np) cross section Calculated with CCONE code /6/. MT= 32 (n,nd) cross section Calculated with CCONE code /6/. MT= 33 (n,nt) cross section Calculated with CCONE code /6/. MT= 51-91 (n,n') cross section Calculated with CCONE code /6/. MT=102 Capture cross section Calculated with CCONE code /6/. MT=103 (n,p) cross section Calculated with CCONE code /6/. MT=104 (n,d) cross section Calculated with CCONE code /6/. MT=105 (n,t) cross section Calculated with CCONE code /6/. MT=106 (n,He3) cross section Calculated with CCONE code /6/. MT=107 (n,a) cross section Calculated with CCONE code /6/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /6/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /6/. MT= 17 (n,3n) reaction Calculated with CCONE code /6/. MT= 22 (n,na) reaction Calculated with CCONE code /6/. MT= 24 (n,2na) reaction Calculated with CCONE code /6/. MT= 28 (n,np) reaction Calculated with CCONE code /6/. MT= 32 (n,nd) reaction Calculated with CCONE code /6/. MT= 33 (n,nt) reaction Calculated with CCONE code /6/. MT= 51-91 (n,n') reaction Calculated with CCONE code /6/. MT=102 Capture reaction Calculated with CCONE code /6/. ***************************************************************** Nuclear Model Calculation with CCONE code /6/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,3,9 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./7/ (+) proton omp: Koning,A.J. and Delaroche,J.P./8/ (+) deuteron omp: Lohr,J.M. and Haeberli,W./9/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ alpha omp: McFadden,L. and Satchler,G.R./11/ (+) omp parameters were modified. 2) Two-component exciton model/12/ * Global parametrization of Koning-Duijvestijn/13/ was used. * Gamma emission channel/14/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/15/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/16/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/17/,/18/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Sm-150 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.33386 2 + * 2 0.74038 0 + 3 0.77324 4 + * 4 1.04604 2 + 5 1.07126 3 - 6 1.16561 1 - 7 1.19373 2 + 8 1.25540 0 + 9 1.27876 6 + * 10 1.35753 5 - 11 1.41717 2 + 12 1.44899 4 + 13 1.50445 3 + 14 1.64252 4 + 15 1.65829 2 - 16 1.67270 5 - 17 1.67271 4 + 18 1.68400 3 - 19 1.71314 1 - 20 1.75956 3 - 21 1.76469 7 - 22 1.77330 5 - 23 1.78660 3 + 24 1.79400 2 + 25 1.81933 4 + 26 1.82172 4 + 27 1.82228 3 - 28 1.83328 2 + 29 1.83687 8 + 30 1.88330 2 + 31 1.92730 2 + 32 1.95057 3 - 33 1.96366 1 - 34 1.97033 4 + 35 1.97930 0 + 36 2.00550 2 + 37 2.02025 5 + 38 2.02453 4 + 39 2.03522 5 - 40 2.04410 0 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141 Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033 Sm-149 19.2000 0.9831 2.9030 0.5042 -0.6887 4.8887 Sm-148 18.4000 1.9728 2.0339 0.5337 0.3686 5.9610 Pm-150 17.9970 0.0000 4.0234 0.4210 -0.7878 2.5000 Pm-149 17.2625 0.9831 3.6138 0.5926 -1.4731 6.0264 Pm-148 18.3000 0.0000 2.8623 0.4670 -1.0648 3.0412 Pm-147 17.0632 0.9897 2.3331 0.6101 -1.2455 5.9682 Nd-149 20.9000 0.9831 3.5199 0.4992 -1.1865 5.3955 Nd-148 21.1000 1.9728 2.8636 0.4784 0.2048 5.9010 Nd-147 19.7000 0.9897 2.4886 0.4934 -0.5694 4.7470 Nd-146 18.1900 1.9863 1.6792 0.5692 0.1138 6.4542 Nd-145 18.5400 0.9965 1.1101 0.5235 -0.2928 4.6189 Nd-144 17.5000 2.0000 0.3419 0.6111 0.2496 6.6190 -------------------------------------------------------- Table 3. Gamma-ray strength function for Sm-151 -------------------------------------------------------- K0 = 1.660 E0 = 4.500 (MeV) * E1: ER = 12.93 (MeV) EG = 3.45 (MeV) SIG = 125.25 (mb) ER = 15.92 (MeV) EG = 5.14 (MeV) SIG = 250.51 (mb) * M1: ER = 7.70 (MeV) EG = 4.00 (MeV) SIG = 1.06 (mb) * E2: ER = 11.83 (MeV) EG = 4.30 (MeV) SIG = 3.53 (mb) -------------------------------------------------------- References 1) Eiland, H.M., et al.: Nucl. Sci. Eng., 54, 286 (1974). 2) Anufriev, V.A., et al.: Proc. 4th All Union Conf. on Neutron Physics, Kiev 1977, Vol.2, 263. 3) Popov, A.B., et al.: Yadernaya Fizika, 32, 603 (1980). 4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 5) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 8) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 9) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 10) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 11) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 12) Kalbach,C.: Phys. Rev. C33, 818 (1986). 13) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 14) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 15) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 16) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 17) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 18) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).