62-Sm-152 JAEA EVAL-Nov09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6249 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 The resolved resonance parameters were evaluated by N.Iwamoto. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,33,102-107) added MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 5.029 keV Resonance parameters were taken from JENDL-2 which was evaluated by Kikuchi et al./1/ as follows: Parameters were adopted from Rahn et al./2/ For the levels whose radiation width was not measured, the average value of 0.065+-0.015 eV was assumed. For JENDL-4.0 the resonance parameters of the first resonance level were taken from Mughabghab /3/. A negative resonance was added at -140 eV so as to reproduce the capture and scattering cross sections at 0.0253 eV, which were recommended by Mughabghab /3/. The scattering radius was changed to 8.4 fm. Unresolved resonance region : 5.029 keV - 200.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /4/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /5/ and CCONE /6/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 2.0898e+02 Elastic 3.0776e+00 n,gamma 2.0590e+02 2.9781e+03 n,alpha 3.7387e-10 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /6/. MT= 16 (n,2n) cross section Calculated with CCONE code /6/. MT= 17 (n,3n) cross section Calculated with CCONE code /6/. MT= 22 (n,na) cross section Calculated with CCONE code /6/. MT= 24 (n,2na) cross section Calculated with CCONE code /6/. MT= 28 (n,np) cross section Calculated with CCONE code /6/. MT= 32 (n,nd) cross section Calculated with CCONE code /6/. MT= 33 (n,nt) cross section Calculated with CCONE code /6/. MT= 51-91 (n,n') cross section Calculated with CCONE code /6/. MT=102 Capture cross section Calculated with CCONE code /6/. MT=103 (n,p) cross section Calculated with CCONE code /6/. MT=104 (n,d) cross section Calculated with CCONE code /6/. MT=105 (n,t) cross section Calculated with CCONE code /6/. MT=106 (n,He3) cross section Calculated with CCONE code /6/. MT=107 (n,a) cross section Calculated with CCONE code /6/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /6/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /6/. MT= 17 (n,3n) reaction Calculated with CCONE code /6/. MT= 22 (n,na) reaction Calculated with CCONE code /6/. MT= 24 (n,2na) reaction Calculated with CCONE code /6/. MT= 28 (n,np) reaction Calculated with CCONE code /6/. MT= 32 (n,nd) reaction Calculated with CCONE code /6/. MT= 33 (n,nt) reaction Calculated with CCONE code /6/. MT= 51-91 (n,n') reaction Calculated with CCONE code /6/. MT=102 Capture reaction Calculated with CCONE code /6/. ***************************************************************** Nuclear Model Calculation with CCONE code /6/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,4,11 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./7/ (+) proton omp: Koning,A.J. and Delaroche,J.P./8/ (+) deuteron omp: Lohr,J.M. and Haeberli,W./9/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ alpha omp: McFadden,L. and Satchler,G.R./11/ (+) omp parameters were modified. 2) Two-component exciton model/12/ * Global parametrization of Koning-Duijvestijn/13/ was used. * Gamma emission channel/14/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/15/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/16/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/17/,/18/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Sm-152 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.12178 2 + * 2 0.36648 4 + * 3 0.68470 0 + 4 0.70688 6 + * 5 0.81045 2 + 6 0.96335 1 - 7 1.02297 4 + 8 1.04111 3 - 9 1.08285 0 + 10 1.08588 2 + 11 1.12535 8 + * 12 1.22148 5 - 13 1.22600 2 + 14 1.23385 3 + 15 1.28994 1 + 16 1.29276 2 + 17 1.31050 6 + 18 1.37174 4 + 19 1.50561 7 - 20 1.51079 1 - 21 1.52979 2 - 22 1.55959 5 + 23 1.57943 3 - 24 1.60923 10 + 25 1.61278 5 - 26 1.64989 2 - 27 1.65880 0 + 28 1.66639 8 + 29 1.68057 1 - 30 1.68209 4 - 31 1.72820 6 + 32 1.73024 3 - 33 1.73600 0 + 34 1.75703 2 + 35 1.76420 5 - 36 1.76910 2 + 37 1.77624 1 - 38 1.80398 5 - 39 1.82119 4 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Sm-153 20.0000 0.9701 3.6781 0.5579 -1.8633 6.3072 Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904 Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141 Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033 Pm-152 18.2003 0.0000 3.4439 0.4590 -1.0726 3.0071 Pm-151 17.4614 0.9765 3.7662 0.5765 -1.3653 5.8316 Pm-150 17.9970 0.0000 4.0234 0.4210 -0.7878 2.5000 Pm-149 17.2625 0.9831 3.6138 0.5926 -1.4731 6.0264 Nd-151 19.8000 0.9765 3.4048 0.5128 -1.0731 5.3158 Nd-150 20.0000 1.9596 3.4363 0.5263 -0.3405 6.6204 Nd-149 20.9000 0.9831 3.5199 0.4992 -1.1865 5.3955 Nd-148 21.1000 1.9728 2.8636 0.4784 0.2048 5.9010 Nd-147 19.7000 0.9897 2.4886 0.4934 -0.5694 4.7470 Nd-146 18.1900 1.9863 1.6792 0.5692 0.1138 6.4542 -------------------------------------------------------- Table 3. Gamma-ray strength function for Sm-153 -------------------------------------------------------- K0 = 1.660 E0 = 4.500 (MeV) * E1: ER = 12.55 (MeV) EG = 3.26 (MeV) SIG = 127.14 (mb) ER = 16.14 (MeV) EG = 5.27 (MeV) SIG = 254.27 (mb) * M1: ER = 7.67 (MeV) EG = 4.00 (MeV) SIG = 1.09 (mb) * E2: ER = 11.78 (MeV) EG = 4.27 (MeV) SIG = 3.50 (mb) -------------------------------------------------------- References 1) KIKUCHI,Y. ET AL.: JAERI-M 86-030 (1986). 2) RAHN,F., ET AL.: PHYS. REV., C6, 251 (1972). 3) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth Edition: Resonance Parameters and Thermal Cross Sections. Z=1-100", Elsevier Science (2006). 4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 5) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 8) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 9) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 10) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 11) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 12) Kalbach,C.: Phys. Rev. C33, 818 (1986). 13) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 14) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 15) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 16) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 17) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 18) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).