62-Sm-153 JAEA EVAL-Nov09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6252 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,41,102-107) added MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 resolved and unresolved resonance parameters No resolved resonance parameters Unresolved resonance region : 3.0 eV - 100.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /1/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /2/ and CCONE /3/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 4.2713e+02 Elastic 6.7226e+00 n,gamma 4.2017e+02 1.4247e+03 n,alpha 2.0046e-06 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /3/. MT= 16 (n,2n) cross section Calculated with CCONE code /3/. MT= 17 (n,3n) cross section Calculated with CCONE code /3/. MT= 22 (n,na) cross section Calculated with CCONE code /3/. MT= 24 (n,2na) cross section Calculated with CCONE code /3/. MT= 28 (n,np) cross section Calculated with CCONE code /3/. MT= 32 (n,nd) cross section Calculated with CCONE code /3/. MT= 41 (n,2np) cross section Calculated with CCONE code /3/. MT= 51-91 (n,n') cross section Calculated with CCONE code /3/. MT=102 Capture cross section Calculated with CCONE code /3/. MT=103 (n,p) cross section Calculated with CCONE code /3/. MT=104 (n,d) cross section Calculated with CCONE code /3/. MT=105 (n,t) cross section Calculated with CCONE code /3/. MT=106 (n,He3) cross section Calculated with CCONE code /3/. MT=107 (n,a) cross section Calculated with CCONE code /3/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /3/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /3/. MT= 17 (n,3n) reaction Calculated with CCONE code /3/. MT= 22 (n,na) reaction Calculated with CCONE code /3/. MT= 24 (n,2na) reaction Calculated with CCONE code /3/. MT= 28 (n,np) reaction Calculated with CCONE code /3/. MT= 32 (n,nd) reaction Calculated with CCONE code /3/. MT= 41 (n,2np) reaction Calculated with CCONE code /3/. MT= 51-91 (n,n') reaction Calculated with CCONE code /3/. MT=102 Capture reaction Calculated with CCONE code /3/. ***************************************************************** Nuclear Model Calculation with CCONE code /3/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,3,4,12,14,30,32 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./4/ (+) proton omp: Koning,A.J. and Delaroche,J.P./5/ deuteron omp: Lohr,J.M. and Haeberli,W./6/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/ alpha omp: McFadden,L. and Satchler,G.R./8/ (+) omp parameters were modified. 2) Two-component exciton model/9/ * Global parametrization of Koning-Duijvestijn/10/ was used. * Gamma emission channel/11/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/12/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/13/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/14/,/15/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Sm-153 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 3/2 + * 1 0.00754 5/2 + * 2 0.03584 3/2 - 3 0.05353 7/2 + * 4 0.06547 9/2 + * 5 0.09087 5/2 - 6 0.09837 11/2 - 7 0.11295 9/2 - 8 0.12641 1/2 - 9 0.12730 3/2 - 10 0.17417 7/2 - 11 0.18290 5/2 - 12 0.18890 11/2 + * 13 0.19465 5/2 + 14 0.19610 13/2 + * 15 0.23700 7/2 - 16 0.24540 13/2 - 17 0.26233 7/2 + 18 0.26593 7/2 - 19 0.26700 9/2 - 20 0.27671 3/2 + 21 0.32111 3/2 + 22 0.35669 5/2 + 23 0.36229 5/2 + 24 0.36900 5/2 - 25 0.36901 9/2 - 26 0.40413 1/2 - 27 0.40547 3/2 - 28 0.41180 15/2 - 29 0.41492 1/2 + 30 0.41780 17/2 + * 31 0.41801 5/2 + 32 0.42510 15/2 + * 33 0.44700 9/2 - 34 0.44705 7/2 + 35 0.45005 5/2 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Sm-154 18.5215 1.9340 3.2136 0.5576 -0.3117 6.6726 Sm-153 20.0000 0.9701 3.6781 0.5579 -1.8633 6.3072 Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904 Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141 Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033 Pm-153 17.6600 0.9701 3.1546 0.5829 -1.3375 5.8693 Pm-152 18.2003 0.0000 3.4439 0.4590 -1.0726 3.0071 Pm-151 17.4614 0.9765 3.7662 0.5765 -1.3653 5.8316 Pm-150 17.9970 0.0000 4.0234 0.4210 -0.7878 2.5000 Nd-152 18.3157 1.9467 3.0281 0.5483 -0.0707 6.4042 Nd-151 19.8000 0.9765 3.4048 0.5128 -1.0731 5.3158 Nd-150 20.0000 1.9596 3.4363 0.5263 -0.3405 6.6204 Nd-149 20.9000 0.9831 3.5199 0.4992 -1.1865 5.3955 Nd-148 21.1000 1.9728 2.8636 0.4784 0.2048 5.9010 Nd-147 19.7000 0.9897 2.4886 0.4934 -0.5694 4.7470 -------------------------------------------------------- Table 3. Gamma-ray strength function for Sm-154 -------------------------------------------------------- K0 = 1.660 E0 = 4.500 (MeV) * E1: ER = 12.27 (MeV) EG = 2.95 (MeV) SIG = 181.00 (mb) ER = 15.94 (MeV) EG = 5.70 (MeV) SIG = 215.00 (mb) * M1: ER = 7.65 (MeV) EG = 4.00 (MeV) SIG = 1.34 (mb) * E2: ER = 11.75 (MeV) EG = 4.26 (MeV) SIG = 3.49 (mb) -------------------------------------------------------- References 1) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 2) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 3) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 4) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 5) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 6) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 7) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 8) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 9) Kalbach,C.: Phys. Rev. C33, 818 (1986). 10) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 11) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 12) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 13) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 14) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 15) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).