62-Sm-154 JAEA EVAL-Nov09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6255 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,28,32,102-107) added MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 resolved and unresolved resonance parameters RESOLVED RESONANCE REGION (MLBW FORMULA) : BELOW 3.0 KEV RESONANCE PARAMETERS WERE TAKEN FROM JENDL-2 EVALUATED BY KIKUCHI ET AL./1/ AND WERE MODIFIED FOR JENDL-3. FOR JENDL-2, PARAMETERS WERE ADOPTED FROM RAHN ET AL./2/ FOR THE LEVELS WHOSE RADIATION WIDTH WAS NOT MEASURED, THE AVERAGE VALUE OF 0.079+-0.013 EV WAS ASSUMED. A NEGATIVE RESONANCE WAS ADDED AT -35 EV SO AS TO REPRODUCE THE CAPTURE CROSS SECTION OF 5.5+-1.1 BARNS AT 0.0253 EV/3/. FOR JENDL-3, THE RADIATION WIDTH OF THE NEGATIVE RESONANCE WAS CHANGED FROM 0.079 EV TO 0.1266 EV AND THE SCATTERING RADIUS FROM 8.34 FM TO 9.67 FM SO AS TO REPRODUCE WELL THE THERMAL CROSS SECTIONS (CAPTURE = 8.4 B, SCATTERING = 11 B) COMPILED BY MUGHABGHAB/4/. Unresolved resonance region : 3.0 keV - 250.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /5/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /6/ and CCONE /7/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 1.9427e+01 Elastic 1.1032e+01 n,gamma 8.3951e+00 3.6490e+01 n,alpha 6.8088e-16 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /7/. MT= 16 (n,2n) cross section Calculated with CCONE code /7/. MT= 17 (n,3n) cross section Calculated with CCONE code /7/. MT= 22 (n,na) cross section Calculated with CCONE code /7/. MT= 28 (n,np) cross section Calculated with CCONE code /7/. MT= 32 (n,nd) cross section Calculated with CCONE code /7/. MT= 51-91 (n,n') cross section Calculated with CCONE code /7/. MT=102 Capture cross section Calculated with CCONE code /7/. MT=103 (n,p) cross section Calculated with CCONE code /7/. MT=104 (n,d) cross section Calculated with CCONE code /7/. MT=105 (n,t) cross section Calculated with CCONE code /7/. MT=106 (n,He3) cross section Calculated with CCONE code /7/. MT=107 (n,a) cross section Calculated with CCONE code /7/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /7/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /7/. MT= 17 (n,3n) reaction Calculated with CCONE code /7/. MT= 22 (n,na) reaction Calculated with CCONE code /7/. MT= 28 (n,np) reaction Calculated with CCONE code /7/. MT= 32 (n,nd) reaction Calculated with CCONE code /7/. MT= 51-91 (n,n') reaction Calculated with CCONE code /7/. MT=102 Capture reaction Calculated with CCONE code /7/. ***************************************************************** Nuclear Model Calculation with CCONE code /7/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,3,4 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./8/ (+) proton omp: Koning,A.J. and Delaroche,J.P./9/ (+) deuteron omp: Lohr,J.M. and Haeberli,W./10/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/ alpha omp: McFadden,L. and Satchler,G.R./12/ (+) omp parameters were modified. 2) Two-component exciton model/13/ * Global parametrization of Koning-Duijvestijn/14/ was used. * Gamma emission channel/15/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/16/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/17/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/18/,/19/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Sm-154 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.08198 2 + * 2 0.26679 4 + * 3 0.54373 6 + * 4 0.90264 8 + * 5 0.92140 1 - 6 1.01239 3 - 7 1.09933 0 + 8 1.10400 4 - 9 1.12000 4 - 10 1.17781 2 + 11 1.18065 5 - 12 1.20238 0 + 13 1.28636 2 + 14 1.29500 2 + 15 1.33280 10 + 16 1.33764 4 + 17 1.36500 3 - 18 1.37100 4 + 19 1.43100 7 - 20 1.44005 2 + 21 1.47213 4 + 22 1.47500 6 + 23 1.47571 1 - 24 1.51519 2 - 25 1.53926 3 + 26 1.57661 6 + 27 1.58455 3 - 28 1.61482 0 + 29 1.66190 4 - 30 1.66489 4 + 31 1.67383 0 + 32 1.70681 4 + 33 1.74100 8 + 34 1.75464 0 + 35 1.75589 0 + 36 1.76000 9 - 37 1.76440 0 + 38 1.77424 5 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Sm-155 19.5000 0.9639 2.9414 0.5495 -1.3709 5.8007 Sm-154 18.5215 1.9340 3.2136 0.5576 -0.3117 6.6726 Sm-153 20.0000 0.9701 3.6781 0.5579 -1.8633 6.3072 Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904 Pm-154 18.4033 0.0000 2.5027 0.3188 0.0149 1.0000 Pm-153 17.6600 0.9701 3.1546 0.5829 -1.3375 5.8693 Pm-152 18.2003 0.0000 3.4439 0.4590 -1.0726 3.0071 Pm-151 17.4614 0.9765 3.7662 0.5765 -1.3653 5.8316 Nd-153 19.0261 0.9701 2.6911 0.3086 0.9675 1.9701 Nd-152 18.3157 1.9467 3.0281 0.5483 -0.0707 6.4042 Nd-151 19.8000 0.9765 3.4048 0.5128 -1.0731 5.3158 Nd-150 20.0000 1.9596 3.4363 0.5263 -0.3405 6.6204 Nd-149 20.9000 0.9831 3.5199 0.4992 -1.1865 5.3955 Nd-148 21.1000 1.9728 2.8636 0.4784 0.2048 5.9010 -------------------------------------------------------- Table 3. Gamma-ray strength function for Sm-155 -------------------------------------------------------- K0 = 1.660 E0 = 4.500 (MeV) * E1: ER = 12.45 (MeV) EG = 3.21 (MeV) SIG = 129.00 (mb) ER = 16.14 (MeV) EG = 5.27 (MeV) SIG = 257.99 (mb) * M1: ER = 7.63 (MeV) EG = 4.00 (MeV) SIG = 1.10 (mb) * E2: ER = 11.73 (MeV) EG = 4.25 (MeV) SIG = 3.47 (mb) -------------------------------------------------------- References 1) KIKUCHI,Y. ET AL.: JAERI-M 86-030 (1986). 2) RAHN,F. ET AL.: PHYS. REV., C6, 251 (1972). 3) MUGHABGHAB,S.F. AND GARBER,D.I.: "NEUTRON CROSS SECTIONS, VOL.1, RESONANCE PARAMETERS", BNL 325, 3RD ED., VOL. 1, (1973). 4) MUGHABGHAB,S.F.: "NEUTRON CROSS SECTIONS, VOL. I, PART B", ACADEMIC PRESS (1984). 5) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 6) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 7) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 8) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 9) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 10) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 11) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 12) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 13) Kalbach,C.: Phys. Rev. C33, 818 (1986). 14) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 15) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 16) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 17) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 18) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 19) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).