63-Eu-151 JAEA EVAL-Nov09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6325 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-10 MF3,6/MT600-849 and MF8,9,10 were added by N.Iwamoto. MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved resonance parameters Taken from JENDL/AD-2017. The parameters were derived by resonance analysis for the data measured at J-PARC MLF ANNRI. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 9.36752E+03 Elastic 3.38674E+00 n,gamma 9.36413E+03 3.28493E+03 n,alpha 8.77136E-06 3.63547E-06 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /1/. MT= 2 Elastic scattering cross section Calculated with CCONE code /1/. MT= 4,51-91 (n,n') cross section Calculated with CCONE code /1/. MT= 16 (n,2n) cross section Calculated with CCONE code /1/. MT= 17 (n,3n) cross section Calculated with CCONE code /1/. MT= 22 (n,na) cross section Calculated with CCONE code /1/. MT= 24 (n,2na) cross section Calculated with CCONE code /1/. MT= 28 (n,np) cross section Calculated with CCONE code /1/. MT= 32 (n,nd) cross section Calculated with CCONE code /1/. MT= 33 (n,nt) cross section Calculated with CCONE code /1/. MT= 41 (n,2np) cross section Calculated with CCONE code /1/. MT=102 Capture cross section Calculated with CCONE code /1/. MT=103,600-649 (n,p) cross section Calculated with CCONE code /1/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /1/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /1/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /1/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /1/. MF= 4 Angular distributions of secondary particles MT= 2 Elastic scattering Calculated with CCONE code /1/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /1/. MT= 17 (n,3n) reaction Calculated with CCONE code /1/. MT= 22 (n,na) reaction Calculated with CCONE code /1/. MT= 24 (n,2na) reaction Calculated with CCONE code /1/. MT= 28 (n,np) reaction Calculated with CCONE code /1/. MT= 32 (n,nd) reaction Calculated with CCONE code /1/. MT= 33 (n,nt) reaction Calculated with CCONE code /1/. MT= 41 (n,2np) reaction Calculated with CCONE code /1/. MT= 51- 91 (n,n') reaction Calculated with CCONE code /1/. MT=102 Capture reaction Calculated with CCONE code /1/. MT=600-649 (n,p) reaction Calculated with CCONE code /1/. MT=650-699 (n,d) reaction Calculated with CCONE code /1/. MT=700-749 (n,t) reaction Calculated with CCONE code /1/. MT=750-799 (n,He3) reaction Calculated with CCONE code /1/. MT=800-849 (n,a) reaction Calculated with CCONE code /1/. MF= 8 Information on decay data MT= 4 (n,n') reaction Decay chain is given in the decay data file. MT= 16 (n,2n) reaction Decay chain is given in the decay data file. MT= 17 (n,3n) reaction Decay chain is given in the decay data file. MT= 22 (n,na) reaction Decay chain is given in the decay data file. MT= 24 (n,2na) reaction Decay chain is given in the decay data file. MT= 28 (n,np) reaction Decay chain is given in the decay data file. MT= 32 (n,nd) reaction Decay chain is given in the decay data file. MT= 33 (n,nt) reaction Decay chain is given in the decay data file. MT= 41 (n,2np) reaction Decay chain is given in the decay data file. MT=102 Capture reaction Decay chain is given in the decay data file. MT=103 (n,p) reaction Decay chain is given in the decay data file. MT=104 (n,d) reaction Decay chain is given in the decay data file. MT=105 (n,t) reaction Decay chain is given in the decay data file. MT=106 (n,He3) reaction Decay chain is given in the decay data file. MT=107 (n,a) reaction Decay chain is given in the decay data file. MF= 9 Isomeric branching ratios MT=102 Capture reaction Calculated with CCONE code /1/. MT=107 (n,a) reaction Calculated with CCONE code /1/. MF=10 Nuclide production reactions MT= 16 (n,2n) reaction Calculated with CCONE code /1/. ***************************************************************** Nuclear Model Calculation with CCONE code /1/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,10,19,36 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./2/ (+) proton omp: Koning,A.J. and Delaroche,J.P./3/ (+) deuteron omp: Lohr,J.M. and Haeberli,W./4/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./5/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./5/ alpha omp: McFadden,L. and Satchler,G.R./6/ (+) (+) omp parameters were modified. 2) Two-component exciton model/7/ * Global parametrization of Koning-Duijvestijn/8/ was used. * Gamma emission channel/9/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/10/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/11/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/12/,/13/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Eu-151 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 5/2 + * 1 0.02154 7/2 + * 2 0.19625 11/2 - 3 0.19654 3/2 + 4 0.21672 7/2 + 5 0.24329 7/2 - 6 0.26047 5/2 + 7 0.30627 5/2 + 8 0.30727 5/2 + 9 0.30753 7/2 + 10 0.30786 9/2 + * 11 0.33218 3/2 + 12 0.33622 5/2 + 13 0.34985 9/2 - 14 0.35365 7/2 - 15 0.41579 7/2 + 16 0.49970 7/2 + 17 0.50227 15/2 - 18 0.50342 9/2 + 19 0.51113 11/2 + * 20 0.52219 3/2 - 21 0.52284 3/2 + 22 0.54633 5/2 + 23 0.58001 3/2 - 24 0.58706 7/2 + 25 0.60048 7/2 - 26 0.60074 5/2 - 27 0.61142 13/2 - 28 0.63270 3/2 + 29 0.65440 5/2 + 30 0.69731 5/2 + 31 0.69818 11/2 - 32 0.71488 9/2 + 33 0.71500 1/2 + 34 0.71918 1/2 + 35 0.73501 1/2 + 36 0.75238 13/2 + * 37 0.75774 1/2 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Eu-152 19.7700 0.0000 4.2144 0.5244 -2.4180 4.7265 Eu-151 21.0000 0.9765 3.8814 0.4854 -1.1094 5.2279 Eu-150 20.0000 0.0000 3.1727 0.4165 -0.9266 2.6887 Eu-149 17.2625 0.9831 2.5338 0.5772 -0.9591 5.4887 Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141 Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033 Sm-149 19.2000 0.9831 2.9030 0.5042 -0.6887 4.8887 Sm-148 18.4000 1.9728 2.0339 0.5337 0.3686 5.9610 Sm-147 18.4207 0.9897 1.4097 0.5385 -0.5090 4.9131 Pm-150 17.9970 0.0000 4.0234 0.4210 -0.7878 2.5000 Pm-149 17.2625 0.9831 3.6138 0.5926 -1.4731 6.0264 Pm-148 18.3000 0.0000 2.8623 0.4670 -1.0648 3.0412 Pm-147 17.0632 0.9897 2.3331 0.6101 -1.2455 5.9682 Pm-146 17.5893 0.0000 1.5389 0.5962 -1.9822 4.7135 Pm-145 16.8637 0.9965 0.9449 0.5991 -0.6199 5.3282 -------------------------------------------------------- Table 3. Gamma-ray strength function for Eu-152 -------------------------------------------------------- K0 = 2.300 E0 = 4.500 (MeV) * E1: ER = 12.84 (MeV) EG = 3.41 (MeV) SIG = 126.81 (mb) ER = 15.95 (MeV) EG = 5.15 (MeV) SIG = 253.62 (mb) * M1: ER = 7.68 (MeV) EG = 4.00 (MeV) SIG = 1.41 (mb) * E2: ER = 11.80 (MeV) EG = 4.29 (MeV) SIG = 3.63 (mb) -------------------------------------------------------- References #7) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 2) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 3) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 4) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 5) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 6) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 7) Kalbach,C.: Phys. Rev. C33, 818 (1986). 8) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 9) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 10) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 11) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 12) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 13) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).