63-Eu-152 JAEA EVAL-Nov09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6328 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,33,41,102-107) added MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters RESOLVED RESONANCE REGION (MLBW FORMULA) : BELOW 6.55 EV. RESONANCE PARAMETERS WERE TAKEN FROM JENDL-2 WHICH WAS EVALUATED BY KIKUCHI ET AL./1/ AS FOLLOWS: PARAMETERS WERE ADOPTED FROM THE DATA MEASURED BY VERTEBNY ET AL./2/ A NEGATIVE RESONANCE WAS ADDED SO AS TO REPRODUCE THE THERMAL CAPTURE CROSS SECTION GIVEN BY MUGHABGHAB/3/. FOR JENDL-3, TOTAL SPIN J WAS TENTATIVELY ESTIMATED WITH A RANDOM NUMBER METHOD. Unresolved resonance region : 6.55 eV - 100 keV The unresolved resonance paramters (URP) were determined by ASREP code /4/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /5/ and CCONE /6/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 1.2781e+04 Elastic 2.9087e+01 n,gamma 1.2751e+04 2.5375e+03 n,p 5.3614e-03 n,alpha 5.2841e-02 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /6/. MT= 16 (n,2n) cross section Calculated with CCONE code /6/. MT= 17 (n,3n) cross section Calculated with CCONE code /6/. MT= 22 (n,na) cross section Calculated with CCONE code /6/. MT= 24 (n,2na) cross section Calculated with CCONE code /6/. MT= 28 (n,np) cross section Calculated with CCONE code /6/. MT= 32 (n,nd) cross section Calculated with CCONE code /6/. MT= 33 (n,nt) cross section Calculated with CCONE code /6/. MT= 41 (n,2np) cross section Calculated with CCONE code /6/. MT= 51-91 (n,n') cross section Calculated with CCONE code /6/. MT=102 Capture cross section Calculated with CCONE code /6/. MT=103 (n,p) cross section Calculated with CCONE code /6/. MT=104 (n,d) cross section Calculated with CCONE code /6/. MT=105 (n,t) cross section Calculated with CCONE code /6/. MT=106 (n,He3) cross section Calculated with CCONE code /6/. MT=107 (n,a) cross section Calculated with CCONE code /6/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /6/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /6/. MT= 17 (n,3n) reaction Calculated with CCONE code /6/. MT= 22 (n,na) reaction Calculated with CCONE code /6/. MT= 24 (n,2na) reaction Calculated with CCONE code /6/. MT= 28 (n,np) reaction Calculated with CCONE code /6/. MT= 32 (n,nd) reaction Calculated with CCONE code /6/. MT= 33 (n,nt) reaction Calculated with CCONE code /6/. MT= 41 (n,2np) reaction Calculated with CCONE code /6/. MT= 51-91 (n,n') reaction Calculated with CCONE code /6/. MT=102 Capture reaction Calculated with CCONE code /6/. ***************************************************************** Nuclear Model Calculation with CCONE code /6/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,5,29 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./7/ (+) proton omp: Koning,A.J. and Delaroche,J.P./8/ deuteron omp: Lohr,J.M. and Haeberli,W./9/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ alpha omp: McFadden,L. and Satchler,G.R./11/ (+) omp parameters were modified. 2) Two-component exciton model/12/ * Global parametrization of Koning-Duijvestijn/13/ was used. * Gamma emission channel/14/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/15/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/16/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/17/,/18/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Eu-152 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 3 - * 1 0.04560 0 - 2 0.06530 1 - 3 0.07726 3 - 4 0.07823 1 + 5 0.08961 4 - * 6 0.08985 4 + 7 0.10812 5 + 8 0.10909 1 - 9 0.11145 2 - 10 0.11397 3 + 11 0.11817 2 - 12 0.12084 2 + 13 0.12454 4 + 14 0.14183 4 - 15 0.14609 3 + 16 0.14786 8 - 17 0.14874 4 + 18 0.14876 6 + 19 0.15069 4 - 20 0.15806 1 + 21 0.16088 3 + 22 0.17494 3 - 23 0.17769 2 + 24 0.17893 3 + 25 0.18063 5 - 26 0.19250 7 + 27 0.19691 3 + 28 0.19967 5 + 29 0.20075 5 - * 30 0.20113 3 + 31 0.20311 1 - 32 0.20318 4 - 33 0.21161 6 + 34 0.21436 2 - 35 0.21443 4 + 36 0.21946 7 - 37 0.22080 3 - 38 0.22121 3 + 39 0.22145 2 - 40 0.22450 3 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Eu-153 17.3400 0.9701 3.8805 0.5963 -1.6297 6.1695 Eu-152 19.7700 0.0000 4.2144 0.5244 -2.4180 4.7265 Eu-151 21.0000 0.9765 3.8814 0.4854 -1.1094 5.2279 Eu-150 20.0000 0.0000 3.1727 0.4165 -0.9266 2.6887 Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904 Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141 Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033 Sm-149 19.2000 0.9831 2.9030 0.5042 -0.6887 4.8887 Sm-148 18.4000 1.9728 2.0339 0.5337 0.3686 5.9610 Pm-151 17.4614 0.9765 3.7662 0.5765 -1.3653 5.8316 Pm-150 17.9970 0.0000 4.0234 0.4210 -0.7878 2.5000 Pm-149 17.2625 0.9831 3.6138 0.5926 -1.4731 6.0264 Pm-148 18.3000 0.0000 2.8623 0.4670 -1.0648 3.0412 Pm-147 17.0632 0.9897 2.3331 0.6101 -1.2455 5.9682 Pm-146 17.5893 0.0000 1.5389 0.5962 -1.9822 4.7135 -------------------------------------------------------- Table 3. Gamma-ray strength function for Eu-153 -------------------------------------------------------- K0 = 2.300 E0 = 4.500 (MeV) * E1: ER = 12.62 (MeV) EG = 3.30 (MeV) SIG = 127.77 (mb) ER = 16.09 (MeV) EG = 5.24 (MeV) SIG = 255.53 (mb) * M1: ER = 7.67 (MeV) EG = 4.00 (MeV) SIG = 1.43 (mb) * E2: ER = 11.78 (MeV) EG = 4.27 (MeV) SIG = 3.61 (mb) -------------------------------------------------------- References 1) KIKUCHI, Y. ET AL.: JAERI-M 86-030 (1986). 2) VERTEBNY, V.P., ET AL.: SOV. J. NUCL. PHYS., 26, 601 (1977). 3) MUGHABGHAB, S.F.: "NEUTRON CROSS SECTIONS, VOL. I, PART B", ACADEMIC PRESS (1984). 4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 5) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 8) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 9) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 10) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 11) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 12) Kalbach,C.: Phys. Rev. C33, 818 (1986). 13) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 14) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 15) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 16) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 17) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 18) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).