63-Eu-153 JAEA EVAL-Nov09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6331 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-10 MF3,6/MT600-849 and MF8,9,10 were added by N.Iwamoto. MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved resonance parameters Taken from JENDL/AD-2017. The parameters were derived by resonance analysis for the data measured at J-PARC MLF ANNRI. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 3.21531E+02 Elastic 8.87041E+00 n,gamma 3.12661E+02 1.45684E+03 n,alpha 7.13416E-07 2.65386E-06 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /1/. MT= 2 Elastic scattering cross section Calculated with CCONE code /1/. MT= 4,51-91 (n,n') cross section Calculated with CCONE code /1/. MT= 16 (n,2n) cross section Calculated with CCONE code /1/. MT= 17 (n,3n) cross section Calculated with CCONE code /1/. MT= 22 (n,na) cross section Calculated with CCONE code /1/. MT= 24 (n,2na) cross section Calculated with CCONE code /1/. MT= 28 (n,np) cross section Calculated with CCONE code /1/. MT= 32 (n,nd) cross section Calculated with CCONE code /1/. MT= 33 (n,nt) cross section Calculated with CCONE code /1/. MT= 41 (n,2np) cross section Calculated with CCONE code /1/. MT=102 Capture cross section Calculated with CCONE code /1/. MT=103,600-649 (n,p) cross section Calculated with CCONE code /1/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /1/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /1/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /1/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /1/. MF= 4 Angular distributions of secondary particles MT= 2 Elastic scattering Calculated with CCONE code /1/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /1/. MT= 17 (n,3n) reaction Calculated with CCONE code /1/. MT= 22 (n,na) reaction Calculated with CCONE code /1/. MT= 24 (n,2na) reaction Calculated with CCONE code /1/. MT= 28 (n,np) reaction Calculated with CCONE code /1/. MT= 32 (n,nd) reaction Calculated with CCONE code /1/. MT= 33 (n,nt) reaction Calculated with CCONE code /1/. MT= 41 (n,2np) reaction Calculated with CCONE code /1/. MT= 51- 91 (n,n') reaction Calculated with CCONE code /1/. MT=102 Capture reaction Calculated with CCONE code /1/. MT=600-649 (n,p) reaction Calculated with CCONE code /1/. MT=650-699 (n,d) reaction Calculated with CCONE code /1/. MT=700-749 (n,t) reaction Calculated with CCONE code /1/. MT=750-799 (n,He3) reaction Calculated with CCONE code /1/. MT=800-849 (n,a) reaction Calculated with CCONE code /1/. MF= 8 Information on decay data MT= 4 (n,n') reaction Decay chain is given in the decay data file. MT= 16 (n,2n) reaction Decay chain is given in the decay data file. MT= 17 (n,3n) reaction Decay chain is given in the decay data file. MT= 22 (n,na) reaction Decay chain is given in the decay data file. MT= 24 (n,2na) reaction Decay chain is given in the decay data file. MT= 28 (n,np) reaction Decay chain is given in the decay data file. MT= 32 (n,nd) reaction Decay chain is given in the decay data file. MT= 33 (n,nt) reaction Decay chain is given in the decay data file. MT= 41 (n,2np) reaction Decay chain is given in the decay data file. MT=102 Capture reaction Decay chain is given in the decay data file. MT=103 (n,p) reaction Decay chain is given in the decay data file. MT=104 (n,d) reaction Decay chain is given in the decay data file. MT=105 (n,t) reaction Decay chain is given in the decay data file. MT=106 (n,He3) reaction Decay chain is given in the decay data file. MT=107 (n,a) reaction Decay chain is given in the decay data file. MF= 9 Isomeric branching ratios MT=102 Capture reaction Calculated with CCONE code /1/. MF=10 Nuclide production reactions MT= 16 (n,2n) reaction Calculated with CCONE code /1/. MT= 24 (n,2na) reaction Calculated with CCONE code /1/. ***************************************************************** Nuclear Model Calculation with CCONE code /1/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,6,10,16,27 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./2/ (+) proton omp: Koning,A.J. and Delaroche,J.P./3/ (+) deuteron omp: Lohr,J.M. and Haeberli,W./4/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./5/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./5/ alpha omp: McFadden,L. and Satchler,G.R./6/ (+) (+) omp parameters were modified. 2) Two-component exciton model/7/ * Global parametrization of Koning-Duijvestijn/8/ was used. * Gamma emission channel/9/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/10/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/11/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/12/,/13/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Eu-153 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 5/2 + * 1 0.08337 7/2 + * 2 0.09743 5/2 - 3 0.10318 3/2 + 4 0.15162 7/2 - 5 0.17285 5/2 + 6 0.19306 9/2 + * 7 0.23528 9/2 - 8 0.26974 7/2 + 9 0.32186 11/2 - 10 0.32507 11/2 + * 11 0.39640 9/2 + 12 0.40329 9/2 - 13 0.44262 5/2 + 14 0.44814 7/2 + 15 0.47793 13/2 - 16 0.48105 13/2 + * 17 0.53794 11/2 + 18 0.55247 11/2 + 19 0.55974 11/2 - 20 0.56931 7/2 + 21 0.58502 9/2 - 22 0.58934 15/2 - 23 0.61718 5/2 + 24 0.63462 1/2 + 25 0.63652 3/2 - 26 0.64159 5/2 + 27 0.65470 15/2 + * 28 0.65768 5/2 + 29 0.68190 5/2 - 30 0.69419 5/2 + 31 0.70139 7/2 + 32 0.70663 5/2 + 33 0.71110 9/2 + 34 0.71311 3/2 + 35 0.71617 13/2 + 36 0.71869 3/2 + 37 0.73252 7/2 + 38 0.73600 5/2 - 39 0.76039 3/2 - 40 0.76380 7/2 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Eu-154 19.2000 0.0000 3.6717 0.5485 -2.4486 4.8922 Eu-153 17.3400 0.9701 3.8805 0.5963 -1.6297 6.1695 Eu-152 19.7700 0.0000 4.2144 0.5244 -2.4180 4.7265 Eu-151 21.0000 0.9765 3.8814 0.4854 -1.1094 5.2279 Sm-153 20.0000 0.9701 3.6781 0.5579 -1.8633 6.3072 Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904 Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141 Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033 Pm-152 18.2003 0.0000 3.4439 0.4590 -1.0726 3.0071 Pm-151 17.4614 0.9765 3.7662 0.5765 -1.3653 5.8316 Pm-150 17.9970 0.0000 4.0234 0.4210 -0.7878 2.5000 Pm-149 17.2625 0.9831 3.6138 0.5926 -1.4731 6.0264 Pm-148 18.3000 0.0000 2.8623 0.4670 -1.0648 3.0412 Pm-147 17.0632 0.9897 2.3331 0.6101 -1.2455 5.9682 -------------------------------------------------------- Table 3. Gamma-ray strength function for Eu-154 -------------------------------------------------------- K0 = 2.300 E0 = 4.500 (MeV) * E1: ER = 12.53 (MeV) EG = 3.25 (MeV) SIG = 128.72 (mb) ER = 16.12 (MeV) EG = 5.26 (MeV) SIG = 257.44 (mb) * M1: ER = 7.65 (MeV) EG = 4.00 (MeV) SIG = 1.44 (mb) * E2: ER = 11.75 (MeV) EG = 4.26 (MeV) SIG = 3.60 (mb) -------------------------------------------------------- References 1) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 2) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 3) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 4) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 5) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 6) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 7) Kalbach,C.: Phys. Rev. C33, 818 (1986). 8) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 9) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 10) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 11) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 12) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 13) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).