63-Eu-154 JAEA EVAL-Nov09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6334 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 The resolved resonance parameters were evaluated by N.Iwamoto. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,33,41,102-105,107) JENDL/AD-2017 adopted (MF8/MT106) added (MF10/MT4,17) JENDL/AD-2017 based MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 0.0262 keV Resonance parameters in JENDL-2 were replaced with the recommendation by Mughabghab/1/. Total spin J was tentatively estimated with a random number method. For JENDL-4.0 the resonance parameters of the first three resonance levels were replaced with those by Mughabghab /2/. Their neutron widths were modified within their errors, considering the result of a benchmark test. No negative resonance was assumed. Unresolved resonance region : 26.2 eV - 100 keV The unresolved resonance paramters (URP) were determined by ASREP code /3/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /4/ and CCONE /5/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 1.3585e+03 Elastic 5.6654e+00 n,gamma 1.3528e+03 1.3541e+03 n,p 5.3116e-09 n,alpha 2.9353e-05 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /5/. MT= 16 (n,2n) cross section Calculated with CCONE code /5/. MT= 17 (n,3n) cross section Calculated with CCONE code /5/. MT= 22 (n,na) cross section Calculated with CCONE code /5/. MT= 24 (n,2na) cross section Calculated with CCONE code /5/. MT= 28 (n,np) cross section Calculated with CCONE code /5/. MT= 32 (n,nd) cross section Calculated with CCONE code /5/. MT= 33 (n,nt) cross section Calculated with CCONE code /5/. MT= 41 (n,2np) cross section Calculated with CCONE code /5/. MT= 51-91 (n,n') cross section Calculated with CCONE code /5/. MT=102 Capture cross section Calculated with CCONE code /5/. MT=103 (n,p) cross section Calculated with CCONE code /5/. MT=104 (n,d) cross section Calculated with CCONE code /5/. MT=105 (n,t) cross section Calculated with CCONE code /5/. MT=106 (n,He3) cross section Calculated with CCONE code /5/. MT=107 (n,a) cross section Calculated with CCONE code /5/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /5/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /5/. MT= 17 (n,3n) reaction Calculated with CCONE code /5/. MT= 22 (n,na) reaction Calculated with CCONE code /5/. MT= 24 (n,2na) reaction Calculated with CCONE code /5/. MT= 28 (n,np) reaction Calculated with CCONE code /5/. MT= 32 (n,nd) reaction Calculated with CCONE code /5/. MT= 33 (n,nt) reaction Calculated with CCONE code /5/. MT= 41 (n,2np) reaction Calculated with CCONE code /5/. MT= 51-91 (n,n') reaction Calculated with CCONE code /5/. MT=102 Capture reaction Calculated with CCONE code /5/. ***************************************************************** Nuclear Model Calculation with CCONE code /5/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,3,19 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./6/ (+) proton omp: Koning,A.J. and Delaroche,J.P./7/ deuteron omp: Lohr,J.M. and Haeberli,W./8/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/ alpha omp: McFadden,L. and Satchler,G.R./10/ (+) omp parameters were modified. 2) Two-component exciton model/11/ * Global parametrization of Koning-Duijvestijn/12/ was used. * Gamma emission channel/13/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/14/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/15/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/16/,/17/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Eu-154 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 3 - * 1 0.06817 2 + 2 0.07191 1 + 3 0.08066 4 - * 4 0.08168 1 - 5 0.08282 1 - 6 0.09995 3 + 7 0.10039 1 - 8 0.10086 4 + 9 0.12256 2 - 10 0.12743 4 + 11 0.12968 4 - 12 0.13478 1 + 13 0.13670 5 + 14 0.14530 8 - 15 0.15360 6 - 16 0.16243 1 - 17 0.17360 3 - 18 0.17548 5 - 19 0.18074 5 - * 20 0.18081 2 - 21 0.18505 2 + 22 0.19229 5 + 23 0.19612 6 + 24 0.20382 3 + 25 0.21407 3 - 26 0.21948 2 - 27 0.22979 5 - 28 0.23088 4 - 29 0.23528 4 - 30 0.23929 3 - 31 0.24942 2 + 32 0.25183 3 + 33 0.25521 5 + 34 0.25819 6 + 35 0.27285 5 - 36 0.27670 7 + 37 0.27855 2 + 38 0.27904 0 - 39 0.27938 4 - 40 0.28168 3 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Eu-155 17.9000 0.9639 3.3259 0.5676 -1.2578 5.7030 Eu-154 19.2000 0.0000 3.6717 0.5485 -2.4486 4.8922 Eu-153 17.3400 0.9701 3.8805 0.5963 -1.6297 6.1695 Eu-152 19.7700 0.0000 4.2144 0.5244 -2.4180 4.7265 Sm-154 18.5215 1.9340 3.2136 0.5576 -0.3117 6.6726 Sm-153 20.0000 0.9701 3.6781 0.5579 -1.8633 6.3072 Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904 Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141 Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033 Pm-153 17.6600 0.9701 3.1546 0.5829 -1.3375 5.8693 Pm-152 18.2003 0.0000 3.4439 0.4590 -1.0726 3.0071 Pm-151 17.4614 0.9765 3.7662 0.5765 -1.3653 5.8316 Pm-150 17.9970 0.0000 4.0234 0.4210 -0.7878 2.5000 Pm-149 17.2625 0.9831 3.6138 0.5926 -1.4731 6.0264 Pm-148 18.3000 0.0000 2.8623 0.4670 -1.0648 3.0412 -------------------------------------------------------- Table 3. Gamma-ray strength function for Eu-155 -------------------------------------------------------- K0 = 2.300 E0 = 4.500 (MeV) * E1: ER = 12.45 (MeV) EG = 3.21 (MeV) SIG = 129.67 (mb) ER = 16.14 (MeV) EG = 5.27 (MeV) SIG = 259.34 (mb) * M1: ER = 7.63 (MeV) EG = 4.00 (MeV) SIG = 1.45 (mb) * E2: ER = 11.73 (MeV) EG = 4.25 (MeV) SIG = 3.59 (mb) -------------------------------------------------------- References 1) MUGHABGHAB, S.F.: "NEUTRON CROSS SECTIONS, VOL. I, PART B", ACADEMIC PRESS (1984). 2) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth Edition: Resonance Parameters and Thermal Cross Sections. Z=1-100", Elsevier Science (2006). 3) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 4) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 5) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 6) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 7) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 8) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 9) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 10) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 11) Kalbach,C.: Phys. Rev. C33, 818 (1986). 12) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 13) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 14) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 15) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 16) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 17) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).