63-Eu-155 JAEA EVAL-Nov09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6337 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,28,32,33,41,102-107) added MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters RESOLVED RESONANCE REGION (MLBW FORMULA) : BELOW 29.7 EV RESONANCE PARAMETERS WERE BASED ON JENDL-2 EVALUATION BY KUKICHI ET AL./1/ WHICH WERE MADE ON THE BASIS OF THE DATA MEASURED BY ANUFRIEV ET AL./2/ A NEGATIVE RESONANCE WAS ADDED SO AS TO REPRODUCE THE THERMAL CAPTURE CROSS SECTION GIVEN BY MUGHABGHAB/3/. FOR JENDL-3, TOTAL SPIN J WAS TENTATIVELY ESTIMATED WITH A RANDOM NUMBER METHOD. PARAMETERS OF THE NEGATIVE LEVEL WERE ADJUSTED TO THE THERMAL CAPTURE CROSS SECTION AND RESONANCE INTEGRAL MEASURED BY SEKINE ET AL./4/. Unresolved resonance region : 29.7 eV - 100 keV The unresolved resonance paramters (URP) were determined by ASREP code /5/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /6/ and CCONE /7/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 3.7671e+03 Elastic 6.6014e+00 n,gamma 3.7605e+03 1.5509e+04 n,alpha 1.6577e-10 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /7/. MT= 16 (n,2n) cross section Calculated with CCONE code /7/. MT= 17 (n,3n) cross section Calculated with CCONE code /7/. MT= 22 (n,na) cross section Calculated with CCONE code /7/. MT= 28 (n,np) cross section Calculated with CCONE code /7/. MT= 32 (n,nd) cross section Calculated with CCONE code /7/. MT= 33 (n,nt) cross section Calculated with CCONE code /7/. MT= 41 (n,2np) cross section Calculated with CCONE code /7/. MT= 51-91 (n,n') cross section Calculated with CCONE code /7/. MT=102 Capture cross section Calculated with CCONE code /7/. MT=103 (n,p) cross section Calculated with CCONE code /7/. MT=104 (n,d) cross section Calculated with CCONE code /7/. MT=105 (n,t) cross section Calculated with CCONE code /7/. MT=106 (n,He3) cross section Calculated with CCONE code /7/. MT=107 (n,a) cross section Calculated with CCONE code /7/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /7/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /7/. MT= 17 (n,3n) reaction Calculated with CCONE code /7/. MT= 22 (n,na) reaction Calculated with CCONE code /7/. MT= 28 (n,np) reaction Calculated with CCONE code /7/. MT= 32 (n,nd) reaction Calculated with CCONE code /7/. MT= 33 (n,nt) reaction Calculated with CCONE code /7/. MT= 41 (n,2np) reaction Calculated with CCONE code /7/. MT= 51-91 (n,n') reaction Calculated with CCONE code /7/. MT=102 Capture reaction Calculated with CCONE code /7/. ***************************************************************** Nuclear Model Calculation with CCONE code /7/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,4,7,11 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./8/ (+) proton omp: Koning,A.J. and Delaroche,J.P./9/ deuteron omp: Lohr,J.M. and Haeberli,W./10/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/ alpha omp: McFadden,L. and Satchler,G.R./12/ (+) omp parameters were modified. 2) Two-component exciton model/13/ * Global parametrization of Koning-Duijvestijn/14/ was used. * Gamma emission channel/15/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/16/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/17/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/18/,/19/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Eu-155 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 5/2 + * 1 0.07864 7/2 + * 2 0.10433 5/2 - 3 0.16901 7/2 - 4 0.17916 9/2 + * 5 0.24578 3/2 + 6 0.25466 9/2 - 7 0.30069 11/2 + * 8 0.30738 5/2 + 9 0.35717 11/2 - 10 0.39148 7/2 + 11 0.44303 13/2 + * 12 0.48709 13/2 - 13 0.50101 9/2 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Eu-156 18.0000 0.0000 2.8275 0.5361 -1.7176 4.0906 Eu-155 17.9000 0.9639 3.3259 0.5676 -1.2578 5.7030 Eu-154 19.2000 0.0000 3.6717 0.5485 -2.4486 4.8922 Eu-153 17.3400 0.9701 3.8805 0.5963 -1.6297 6.1695 Sm-155 19.5000 0.9639 2.9414 0.5495 -1.3709 5.8007 Sm-154 18.5215 1.9340 3.2136 0.5576 -0.3117 6.6726 Sm-153 20.0000 0.9701 3.6781 0.5579 -1.8633 6.3072 Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904 Pm-154 18.4033 0.0000 2.5027 0.3188 0.0149 1.0000 Pm-153 17.6600 0.9701 3.1546 0.5829 -1.3375 5.8693 Pm-152 18.2003 0.0000 3.4439 0.4590 -1.0726 3.0071 Pm-151 17.4614 0.9765 3.7662 0.5765 -1.3653 5.8316 Pm-150 17.9970 0.0000 4.0234 0.4210 -0.7878 2.5000 Pm-149 17.2625 0.9831 3.6138 0.5926 -1.4731 6.0264 -------------------------------------------------------- Table 3. Gamma-ray strength function for Eu-156 -------------------------------------------------------- K0 = 2.300 E0 = 4.500 (MeV) * E1: ER = 12.43 (MeV) EG = 3.20 (MeV) SIG = 130.61 (mb) ER = 16.12 (MeV) EG = 5.26 (MeV) SIG = 261.22 (mb) * M1: ER = 7.62 (MeV) EG = 4.00 (MeV) SIG = 1.45 (mb) * E2: ER = 11.70 (MeV) EG = 4.24 (MeV) SIG = 3.57 (mb) -------------------------------------------------------- References 1) KIKUCHI, Y. ET AL.: JAERI-M 86-030 (1986). 2) ANUFRIEV, V.A., ET AL.: SOV. AT. ENERGY, 46, 182 (1979). 3) MUGHABGHAB, S.F.: "NEUTRON CROSS SECTIONS, VOL. I, PART B", ACADEMIC PRESS (1984). 4) SEKINE, T. ET AL.: APPL. RADIAT. ISOT., 38, 513 (1987). 5) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 6) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 7) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 8) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 9) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 10) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 11) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 12) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 13) Kalbach,C.: Phys. Rev. C33, 818 (1986). 14) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 15) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 16) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 17) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 18) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 19) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).