63-Eu-156 JAEA EVAL-Nov09 N.Iwamoto DIST-DEC21 20121015 ----JENDL-5 MATERIAL 6340 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 12-10 The thermal capture cross section was revised to 100 barn by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,33,41,102-105,107) JENDL/AD-2017 adopted (MF8/MT106) added (MF10/MT17,22) JENDL/AD-2017 based MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters No resolved resonance parameters Unresolved resonance region : 10.0 eV - 100 keV The unresolved resonance paramters (URP) were determined by ASREP code /1/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /2/ and CCONE /3/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 1.0921e+02 Elastic 9.0297e+00 n,gamma 1.0004e+02 6.4156e+02 n,alpha 1.2236e-06 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /3/. MT= 16 (n,2n) cross section Calculated with CCONE code /3/. MT= 17 (n,3n) cross section Calculated with CCONE code /3/. MT= 22 (n,na) cross section Calculated with CCONE code /3/. MT= 24 (n,2na) cross section Calculated with CCONE code /3/. MT= 28 (n,np) cross section Calculated with CCONE code /3/. MT= 32 (n,nd) cross section Calculated with CCONE code /3/. MT= 33 (n,nt) cross section Calculated with CCONE code /3/. MT= 41 (n,2np) cross section Calculated with CCONE code /3/. MT= 51-91 (n,n') cross section Calculated with CCONE code /3/. MT=102 Capture cross section Calculated with CCONE code /3/. In JENDL-4.0u1 the thermal capture cross section was revised to 100 barn which was recommended by PIE analyses for Gd. This resulted in the change of cross section below 10 eV where the 1/v-shape was adopted. MT=103 (n,p) cross section Calculated with CCONE code /3/. MT=104 (n,d) cross section Calculated with CCONE code /3/. MT=105 (n,t) cross section Calculated with CCONE code /3/. MT=106 (n,He3) cross section Calculated with CCONE code /3/. MT=107 (n,a) cross section Calculated with CCONE code /3/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /3/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /3/. MT= 17 (n,3n) reaction Calculated with CCONE code /3/. MT= 22 (n,na) reaction Calculated with CCONE code /3/. MT= 24 (n,2na) reaction Calculated with CCONE code /3/. MT= 28 (n,np) reaction Calculated with CCONE code /3/. MT= 32 (n,nd) reaction Calculated with CCONE code /3/. MT= 33 (n,nt) reaction Calculated with CCONE code /3/. MT= 41 (n,2np) reaction Calculated with CCONE code /3/. MT= 51-91 (n,n') reaction Calculated with CCONE code /3/. MT=102 Capture reaction Calculated with CCONE code /3/. ***************************************************************** Nuclear Model Calculation with CCONE code /3/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,4,8,13 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./4/ (+) proton omp: Koning,A.J. and Delaroche,J.P./5/ deuteron omp: Lohr,J.M. and Haeberli,W./6/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/ alpha omp: McFadden,L. and Satchler,G.R./8/ (+) omp parameters were modified. 2) Two-component exciton model/9/ * Global parametrization of Koning-Duijvestijn/10/ was used. * Gamma emission channel/11/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/12/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/13/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/14/,/15/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Eu-156 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.02252 1 + * 2 0.04767 2 + * 3 0.08749 1 - 4 0.10359 3 + * 5 0.12546 2 - 6 0.14568 5 + 7 0.14967 5 - 8 0.15971 4 + * 9 0.17515 4 + 10 0.18420 3 - 11 0.21493 4 - 12 0.21778 0 - 13 0.25017 5 + * 14 0.25814 4 - 15 0.26018 4 + 16 0.26695 1 - 17 0.26875 2 - 18 0.26875 5 + 19 0.29130 1 + 20 0.31310 5 - 21 0.32470 2 + 22 0.34332 3 - 23 0.35344 3 - 24 0.36854 5 - 25 0.37537 3 + 26 0.38632 4 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Eu-157 18.0565 0.9577 2.7904 0.5507 -0.9395 5.3155 Eu-156 18.0000 0.0000 2.8275 0.5361 -1.7176 4.0906 Eu-155 17.9000 0.9639 3.3259 0.5676 -1.2578 5.7030 Eu-154 19.2000 0.0000 3.6717 0.5485 -2.4486 4.8922 Sm-156 18.7270 1.9215 2.8073 0.5682 -0.4051 6.8309 Sm-155 19.5000 0.9639 2.9414 0.5495 -1.3709 5.8007 Sm-154 18.5215 1.9340 3.2136 0.5576 -0.3117 6.6726 Sm-153 20.0000 0.9701 3.6781 0.5579 -1.8633 6.3072 Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904 Pm-155 17.8584 0.9639 2.7732 0.5535 -0.9127 5.3040 Pm-154 18.4033 0.0000 2.5027 0.3188 0.0149 1.0000 Pm-153 17.6600 0.9701 3.1546 0.5829 -1.3375 5.8693 Pm-152 18.2003 0.0000 3.4439 0.4590 -1.0726 3.0071 Pm-151 17.4614 0.9765 3.7662 0.5765 -1.3653 5.8316 Pm-150 17.9970 0.0000 4.0234 0.4210 -0.7878 2.5000 -------------------------------------------------------- Table 3. Gamma-ray strength function for Eu-157 -------------------------------------------------------- K0 = 2.300 E0 = 4.500 (MeV) * E1: ER = 12.42 (MeV) EG = 3.19 (MeV) SIG = 131.55 (mb) ER = 16.09 (MeV) EG = 5.24 (MeV) SIG = 263.09 (mb) * M1: ER = 7.60 (MeV) EG = 4.00 (MeV) SIG = 1.45 (mb) * E2: ER = 11.68 (MeV) EG = 4.23 (MeV) SIG = 3.56 (mb) -------------------------------------------------------- References 1) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 2) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 3) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 4) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 5) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 6) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 7) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 8) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 9) Kalbach,C.: Phys. Rev. C33, 818 (1986). 10) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 11) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 12) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 13) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 14) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 15) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).