64-Gd-152 JAEA+ EVAL-Dec09 N.Iwamoto,A.Zukeran,K.Shibata DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6425 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by A.Zukeran,K.Shibata. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,25,28,32,33,41,102-105,107,108) JENDL/AD-2017 adopted (MF8/MT106) added (MF10/MT32,41,103,105) JENDL/AD-2017 based MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 2.66 keV Resonance parameters below 10 eV were evaluated on the basis of Mughabghab/1/. Above 12 eV, parameters were adopted from Macklin/2/. For the resonances only whose capture area was measured, neutron widths were determined from the capture area and an average radiation width of 0.0586 eV/2/. The total spin J and orbital angular momentum L were assigned by considering the magnitude of the capture area of each resonance. A negative resonance was added so as to reproduce the thermal capture cross section of 735+-20 barns and the capture resonance integral of 2020+-160 barns/1/. Scattering radius of 8.2 fm was estimated from an optical model calculation shown in fig. 2 of ref./1/ In JENDL-4, the data for 12.46 - 184 eV were replaced with the ones obtained by Anufriev et al./3/ The 207.7-eV resonance was removed, since it was not observed by Leinweber et al./4/ The energy of the negative resonance was adjusted so as to reproduce the thermal capture cross section recommended by Mughabghab./5/ Unresolved resonance region : 2.66 keV - 300.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /6/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /7/ and CCONE /8/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 7.4555e+02 Elastic 1.0452e+01 n,gamma 7.3509e+02 9.3512e+02 n,alpha 7.0393e-03 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /8/. MT= 16 (n,2n) cross section Calculated with CCONE code /8/. MT= 17 (n,3n) cross section Calculated with CCONE code /8/. MT= 22 (n,na) cross section Calculated with CCONE code /8/. MT= 24 (n,2na) cross section Calculated with CCONE code /8/. MT= 25 (n,3na) cross section Calculated with CCONE code /8/. MT= 28 (n,np) cross section Calculated with CCONE code /8/. MT= 32 (n,nd) cross section Calculated with CCONE code /8/. MT= 33 (n,nt) cross section Calculated with CCONE code /8/. MT= 41 (n,2np) cross section Calculated with CCONE code /8/. MT= 51-91 (n,n') cross section Calculated with CCONE code /8/. MT=102 Capture cross section Calculated with CCONE code /8/. MT=103 (n,p) cross section Calculated with CCONE code /8/. MT=104 (n,d) cross section Calculated with CCONE code /8/. MT=105 (n,t) cross section Calculated with CCONE code /8/. MT=106 (n,He3) cross section Calculated with CCONE code /8/. MT=107 (n,a) cross section Calculated with CCONE code /8/. MT=108 (n,2a) cross section Calculated with CCONE code /8/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /8/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /8/. MT= 17 (n,3n) reaction Calculated with CCONE code /8/. MT= 22 (n,na) reaction Calculated with CCONE code /8/. MT= 24 (n,2na) reaction Calculated with CCONE code /8/. MT= 25 (n,3na) reaction Calculated with CCONE code /8/. MT= 28 (n,np) reaction Calculated with CCONE code /8/. MT= 32 (n,nd) reaction Calculated with CCONE code /8/. MT= 33 (n,nt) reaction Calculated with CCONE code /8/. MT= 41 (n,2np) reaction Calculated with CCONE code /8/. MT= 51-91 (n,n') reaction Calculated with CCONE code /8/. MT=102 Capture reaction Calculated with CCONE code /8/. ***************************************************************** Nuclear Model Calculation with CCONE code /8/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,3,8,20 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./9/ (+) proton omp: Koning,A.J. and Delaroche,J.P./10/ deuteron omp: Lohr,J.M. and Haeberli,W./11/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./12/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./12/ alpha omp: Huizenga,J.R. and Igo,G./13/ (+) omp parameters were modified. 2) Two-component exciton model/14/ * Global parametrization of Koning-Duijvestijn/15/ was used. * Gamma emission channel/16/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/17/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/18/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/19/,/20/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Gd-152 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.34428 2 + * 2 0.61540 0 + 3 0.75540 4 + * 4 0.93054 2 + 5 1.04785 0 + 6 1.10917 2 + 7 1.12319 3 - 8 1.22738 6 + * 9 1.28226 4 + 10 1.31465 1 - 11 1.31842 2 + 12 1.43402 3 + 13 1.46053 1 + 14 1.47048 5 - 15 1.55021 4 + 16 1.60560 2 + 17 1.64341 2 - 18 1.66807 6 + 19 1.69241 3 + 20 1.74678 8 + * 21 1.75598 1 - 22 1.77157 3 - 23 1.80766 5 - 24 1.83962 2 + 25 1.86158 5 + 26 1.86205 2 + 27 1.88030 7 - 28 1.91542 3 - 29 1.94116 2 + 30 1.96200 0 - 31 1.97567 2 + 32 1.99789 6 + 33 2.01163 3 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Gd-153 20.9000 0.9701 3.9793 0.5231 -1.6694 5.9506 Gd-152 18.3157 1.9467 3.2774 0.5203 0.2124 5.9623 Gd-151 18.8247 0.9765 2.9209 0.5214 -0.8124 5.0822 Gd-150 18.1096 1.9596 2.0439 0.5067 0.7184 5.4062 Eu-152 19.7700 0.0000 4.2144 0.5244 -2.4180 4.7265 Eu-151 21.0000 0.9765 3.8814 0.4854 -1.1094 5.2279 Eu-150 20.0000 0.0000 3.1727 0.4165 -0.9266 2.6887 Eu-149 17.2625 0.9831 2.5338 0.5772 -0.9591 5.4887 Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141 Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033 Sm-149 19.2000 0.9831 2.9030 0.5042 -0.6887 4.8887 Sm-148 18.4000 1.9728 2.0339 0.5337 0.3686 5.9610 Sm-147 18.4207 0.9897 1.4097 0.5385 -0.5090 4.9131 Sm-146 17.6964 1.9863 0.5792 0.5450 0.8159 5.5739 -------------------------------------------------------- Table 3. Gamma-ray strength function for Gd-153 -------------------------------------------------------- K0 = 2.000 E0 = 4.500 (MeV) * E1: ER = 11.20 (MeV) EG = 2.60 (MeV) SIG = 180.00 (mb) ER = 15.20 (MeV) EG = 3.60 (MeV) SIG = 242.00 (mb) * M1: ER = 7.67 (MeV) EG = 4.00 (MeV) SIG = 1.86 (mb) * E2: ER = 11.78 (MeV) EG = 4.27 (MeV) SIG = 3.73 (mb) -------------------------------------------------------- References 1) Mughabghab, S.F.: "Neutron Cross Sections, Vol. I, Part B", Academic Press (1984). 2) Macklin, R.L.: Nucl. Sci. Eng. 95, 304 (1987). 3) Anufriev, V.A. et al.: 87 Kiev, 2, 225 (1987). 4) Leinweber, G et al.: Nucl. Sci. Eng., 154, 261 (2006). 5) Mughabghab, S.F.: "Atlas of Neutron Resonances", Elsevier (2006). 6) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 7) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 8) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 9) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 10) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 11) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 12) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 13) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 14) Kalbach,C.: Phys. Rev. C33, 818 (1986). 15) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 16) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 17) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 18) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 19) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 20) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).