64-Gd-153 JAEA EVAL-Dec09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6428 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by N.Iwamoto. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,33,41,102-105,107) JENDL/AD-2017 adopted (MF8/MT106) added (MF10/MT28,33,104) JENDL/AD-2017 based MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region: below 132 eV Resolved resonance parameters were taken from Mughabghab /1/. Unresolved resonance region : 132 eV - 100 keV The unresolved resonance paramters (URP) were determined by ASREP code /2/ so as to reproduce the total and capture cross sections calculated with optical model code CCOM /3/ and CCONE /4/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 2.2183e+04 Elastic 1.8622e+01 n,gamma 2.2164e+04 3.5190e+02 n,p 1.6629e-09 n,alpha 3.2873e-02 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 24 (n,2na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT= 32 (n,nd) cross section Calculated with CCONE code /4/. MT= 33 (n,nt) cross section Calculated with CCONE code /4/. MT= 41 (n,2np) cross section Calculated with CCONE code /4/. MT= 51-91 (n,n') cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. MT=103 (n,p) cross section Calculated with CCONE code /4/. MT=104 (n,d) cross section Calculated with CCONE code /4/. MT=105 (n,t) cross section Calculated with CCONE code /4/. MT=106 (n,He3) cross section Calculated with CCONE code /4/. MT=107 (n,a) cross section Calculated with CCONE code /4/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 24 (n,2na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 33 (n,nt) reaction Calculated with CCONE code /4/. MT= 41 (n,2np) reaction Calculated with CCONE code /4/. MT= 51-91 (n,n') reaction Calculated with CCONE code /4/. MT=102 Capture reaction Calculated with CCONE code /4/. ***************************************************************** Nuclear Model Calculation with CCONE code /4/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,7,30 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./5/ (+) proton omp: Koning,A.J. and Delaroche,J.P./6/ deuteron omp: Lohr,J.M. and Haeberli,W./7/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ alpha omp: Huizenga,J.R. and Igo,G./9/ (+) omp parameters were modified. 2) Two-component exciton model/10/ * Global parametrization of Koning-Duijvestijn/11/ was used. * Gamma emission channel/12/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/13/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/14/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/15/,/16/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Gd-153 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 3/2 - * 1 0.04156 5/2 - * 2 0.09334 7/2 - * 3 0.09517 9/2 + 4 0.10976 5/2 - 5 0.12916 3/2 - 6 0.13979 13/2 + 7 0.16840 9/2 - * 8 0.17119 11/2 - 9 0.18347 5/2 + 10 0.21201 3/2 + 11 0.21599 7/2 - 12 0.21944 9/2 - 13 0.24955 5/2 - 14 0.29036 7/2 + 15 0.30354 5/2 + 16 0.31520 1/2 - 17 0.31603 3/2 + 18 0.32230 7/2 - 19 0.32785 1/2 + 20 0.33317 9/2 - 21 0.33630 3/2 + 22 0.36165 3/2 - 23 0.36345 13/2 - 24 0.36539 17/2 + 25 0.36867 5/2 - 26 0.37800 11/2 + 27 0.39515 7/2 + 28 0.41290 3/2 + 29 0.42930 5/2 + 30 0.43010 11/2 - * 31 0.43627 1/2 - 32 0.44219 5/2 + 33 0.44852 5/2 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Gd-154 18.5215 1.9340 3.6018 0.5706 -0.6048 7.0075 Gd-153 20.9000 0.9701 3.9793 0.5231 -1.6694 5.9506 Gd-152 18.3157 1.9467 3.2774 0.5203 0.2124 5.9623 Gd-151 18.8247 0.9765 2.9209 0.5214 -0.8124 5.0822 Eu-153 17.3400 0.9701 3.8805 0.5963 -1.6297 6.1695 Eu-152 19.7700 0.0000 4.2144 0.5244 -2.4180 4.7265 Eu-151 21.0000 0.9765 3.8814 0.4854 -1.1094 5.2279 Eu-150 20.0000 0.0000 3.1727 0.4165 -0.9266 2.6887 Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904 Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141 Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033 Sm-149 19.2000 0.9831 2.9030 0.5042 -0.6887 4.8887 Sm-148 18.4000 1.9728 2.0339 0.5337 0.3686 5.9610 Sm-147 18.4207 0.9897 1.4097 0.5385 -0.5090 4.9131 -------------------------------------------------------- Table 3. Gamma-ray strength function for Gd-154 -------------------------------------------------------- K0 = 2.000 E0 = 4.500 (MeV) * E1: ER = 11.20 (MeV) EG = 2.60 (MeV) SIG = 180.00 (mb) ER = 15.20 (MeV) EG = 3.60 (MeV) SIG = 242.00 (mb) * M1: ER = 7.65 (MeV) EG = 4.00 (MeV) SIG = 1.84 (mb) * E2: ER = 11.75 (MeV) EG = 4.26 (MeV) SIG = 3.72 (mb) -------------------------------------------------------- References 1) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth Edition: Resonance Parameters and Thermal Cross Sections. Z=1-100", Elsevier Science (2006). 2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 3) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003) 4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 10) Kalbach,C.: Phys. Rev. C33, 818 (1986). 11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).