64-Gd-154 JAEA+ EVAL-Dec09 N.Iwamoto,A.Zukeran,K.Shibata DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6431 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by A.Zukeran,K.Shibata. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,102-105,107) JENDL/AD-2017 adopted (MF8/MT106) added (MF10/MT32,103,105) JENDL/AD-2017 based MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 2.76 keV Resonance parameters below 486 eV were evaluated on the basis of Mughabghab/1/. Above 486 eV, parameters were adopted from Macklin/2/. For the resonances only whose capture area was measured, neutron widths were determined from the capture area and an average radiation width of 0.088 eV/1/. The total spin J and orbital angular momentum L were assigned by considering the magnitude of the capture area of each resonance. A negative resonance was added so as to reproduce the thermal capture cross section of 85+-12 barns/1/. Scattering radius of 8.0 fm was estimated from an optical model calculation shown in fig. 2 of ref./1/. In JENDL-4, the data for 11.57 - 269.6 eV were replaced with the ones obtained by Leinweber et al./3/ The energy of the negative resonance was adjusted. Unresolved resonance region : 2.76 keV - 300.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /4/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /5/ and CCONE /6/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 9.1626e+01 Elastic 6.5644e+00 n,gamma 8.5061e+01 2.8797e+02 n,alpha 1.5070e-06 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /6/. MT= 16 (n,2n) cross section Calculated with CCONE code /6/. MT= 17 (n,3n) cross section Calculated with CCONE code /6/. MT= 22 (n,na) cross section Calculated with CCONE code /6/. MT= 24 (n,2na) cross section Calculated with CCONE code /6/. MT= 28 (n,np) cross section Calculated with CCONE code /6/. MT= 32 (n,nd) cross section Calculated with CCONE code /6/. MT= 51-91 (n,n') cross section Calculated with CCONE code /6/. MT=102 Capture cross section Calculated with CCONE code /6/. MT=103 (n,p) cross section Calculated with CCONE code /6/. MT=104 (n,d) cross section Calculated with CCONE code /6/. MT=105 (n,t) cross section Calculated with CCONE code /6/. MT=106 (n,He3) cross section Calculated with CCONE code /6/. MT=107 (n,a) cross section Calculated with CCONE code /6/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /6/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /6/. MT= 17 (n,3n) reaction Calculated with CCONE code /6/. MT= 22 (n,na) reaction Calculated with CCONE code /6/. MT= 24 (n,2na) reaction Calculated with CCONE code /6/. MT= 28 (n,np) reaction Calculated with CCONE code /6/. MT= 32 (n,nd) reaction Calculated with CCONE code /6/. MT= 51-91 (n,n') reaction Calculated with CCONE code /6/. MT=102 Capture reaction Calculated with CCONE code /6/. ***************************************************************** Nuclear Model Calculation with CCONE code /6/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,4,10 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./7/ (+) proton omp: Koning,A.J. and Delaroche,J.P./8/ deuteron omp: Lohr,J.M. and Haeberli,W./9/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ alpha omp: Huizenga,J.R. and Igo,G./11/ (+) omp parameters were modified. 2) Two-component exciton model/12/ * Global parametrization of Koning-Duijvestijn/13/ was used. * Gamma emission channel/14/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/15/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/16/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/17/,/18/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Gd-154 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.12307 2 + * 2 0.37100 4 + * 3 0.68066 0 + 4 0.71766 6 + * 5 0.81548 2 + 6 0.99625 2 + 7 1.04758 4 + 8 1.12778 3 + 9 1.13596 2 + 10 1.14443 8 + * 11 1.18208 0 + 12 1.23310 3 - 13 1.24127 1 - 14 1.25162 3 - 15 1.26378 4 + 16 1.27699 4 + 17 1.29417 2 + 18 1.29547 0 + 19 1.36500 1 + 20 1.36587 6 + 21 1.39752 2 - 22 1.40407 5 - 23 1.41442 1 - 24 1.41814 2 + 25 1.43258 5 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Gd-155 20.5000 0.9639 3.7045 0.5229 -1.4800 5.7609 Gd-154 18.5215 1.9340 3.6018 0.5706 -0.6048 7.0075 Gd-153 20.9000 0.9701 3.9793 0.5231 -1.6694 5.9506 Gd-152 18.3157 1.9467 3.2774 0.5203 0.2124 5.9623 Eu-154 19.2000 0.0000 3.6717 0.5485 -2.4486 4.8922 Eu-153 17.3400 0.9701 3.8805 0.5963 -1.6297 6.1695 Eu-152 19.7700 0.0000 4.2144 0.5244 -2.4180 4.7265 Eu-151 21.0000 0.9765 3.8814 0.4854 -1.1094 5.2279 Sm-153 20.0000 0.9701 3.6781 0.5579 -1.8633 6.3072 Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904 Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141 Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033 Sm-149 19.2000 0.9831 2.9030 0.5042 -0.6887 4.8887 Sm-148 18.4000 1.9728 2.0339 0.5337 0.3686 5.9610 -------------------------------------------------------- Table 3. Gamma-ray strength function for Gd-155 -------------------------------------------------------- K0 = 2.000 E0 = 4.500 (MeV) * E1: ER = 11.20 (MeV) EG = 2.60 (MeV) SIG = 180.00 (mb) ER = 15.20 (MeV) EG = 3.60 (MeV) SIG = 242.00 (mb) * M1: ER = 7.63 (MeV) EG = 4.00 (MeV) SIG = 1.82 (mb) * E2: ER = 11.73 (MeV) EG = 4.25 (MeV) SIG = 3.70 (mb) -------------------------------------------------------- References 1) Mughabghab, S.F.: "Neutron Cross Sections, Vol. I, Part B", Academic Press (1984). 2) Macklin, R.L.: Nucl. Sci. Eng., 95. 304 (1987). 3) Leinweber, G et al.: Nucl. Sci. Eng., 154, 261 (2006). 4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 5) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 8) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 9) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 10) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 11) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 12) Kalbach,C.: Phys. Rev. C33, 818 (1986). 13) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 14) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 15) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 16) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 17) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 18) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).