64-Gd-156 JAEA+ EVAL-Dec09 N.Iwamoto,A.Zukeran,K.Shibata DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6437 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by A.Zukeran,K.Shibata. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,102-105,107) JENDL/AD-2017 adopted (MF8/MT106) added (MF10/MT32,105) JENDL/AD-2017 based MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula): below 2.214 keV Evaluation for JENDL-2 was made on the basis of the data by Karzhavina et al./1/ and by Coceva and Stefanon/2/. The average radiation width of 0.10611 eV was assumed. Scattering radius of 8.1 fm was adopted from bnl 325(3rd.) /3/. In JENDL-4, the data for 33.14 - 245.2 eV were replaced with the ones obtained by Leinweber et al./4/ The 201.6-eV resonance was removed, since it was not observed by Leinweber et al. Unresolved resonance region : 2.214 keV - 275.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /5/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /6/ and CCONE /7/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 7.0734e+00 Elastic 5.2460e+00 n,gamma 1.8274e+00 1.0662e+02 n,alpha 3.4246e-10 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /7/. MT= 16 (n,2n) cross section Calculated with CCONE code /7/. MT= 17 (n,3n) cross section Calculated with CCONE code /7/. MT= 22 (n,na) cross section Calculated with CCONE code /7/. MT= 24 (n,2na) cross section Calculated with CCONE code /7/. MT= 28 (n,np) cross section Calculated with CCONE code /7/. MT= 32 (n,nd) cross section Calculated with CCONE code /7/. MT= 51-91 (n,n') cross section Calculated with CCONE code /7/. MT=102 Capture cross section Calculated with CCONE code /7/. MT=103 (n,p) cross section Calculated with CCONE code /7/. MT=104 (n,d) cross section Calculated with CCONE code /7/. MT=105 (n,t) cross section Calculated with CCONE code /7/. MT=106 (n,He3) cross section Calculated with CCONE code /7/. MT=107 (n,a) cross section Calculated with CCONE code /7/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /7/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /7/. MT= 17 (n,3n) reaction Calculated with CCONE code /7/. MT= 22 (n,na) reaction Calculated with CCONE code /7/. MT= 24 (n,2na) reaction Calculated with CCONE code /7/. MT= 28 (n,np) reaction Calculated with CCONE code /7/. MT= 32 (n,nd) reaction Calculated with CCONE code /7/. MT= 51-91 (n,n') reaction Calculated with CCONE code /7/. MT=102 Capture reaction Calculated with CCONE code /7/. ***************************************************************** Nuclear Model Calculation with CCONE code /7/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,3,4,18 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./8/ (+) proton omp: Koning,A.J. and Delaroche,J.P./9/ deuteron omp: Lohr,J.M. and Haeberli,W./10/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/ alpha omp: Huizenga,J.R. and Igo,G./12/ (+) omp parameters were modified. 2) Two-component exciton model/13/ * Global parametrization of Koning-Duijvestijn/14/ was used. * Gamma emission channel/15/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/16/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/17/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/18/,/19/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Gd-156 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.08897 2 + * 2 0.28819 4 + * 3 0.58471 6 + * 4 0.96513 8 + * 5 1.04949 0 + 6 1.12944 2 + 7 1.15415 2 + 8 1.16819 0 + 9 1.24248 1 - 10 1.24801 3 + 11 1.25807 2 + 12 1.27614 3 - 13 1.29782 4 + 14 1.31966 2 - 15 1.35542 4 + 16 1.36646 1 - 17 1.40813 5 - 18 1.41608 10 + * 19 1.46230 4 + 20 1.46851 4 - 21 1.50686 5 + 22 1.51059 4 + 23 1.53885 3 - 24 1.54019 6 + 25 1.57687 0 + 26 1.59500 0 + 27 1.62254 5 + 28 1.63800 7 - 29 1.64365 6 + 30 1.70580 6 - 31 1.71519 0 + 32 1.75365 6 + 33 1.76561 6 + 34 1.77109 2 + 35 1.78049 2 - 36 1.79872 5 - 37 1.80400 0 + 38 1.82784 2 + 39 1.84833 8 + 40 1.84984 7 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Gd-157 20.0000 0.9577 3.0516 0.5315 -1.2892 5.6268 Gd-156 19.0000 1.9215 3.2702 0.5513 -0.3880 6.7098 Gd-155 20.5000 0.9639 3.7045 0.5229 -1.4800 5.7609 Gd-154 18.5215 1.9340 3.6018 0.5706 -0.6048 7.0075 Eu-156 18.0000 0.0000 2.8275 0.5361 -1.7176 4.0906 Eu-155 17.9000 0.9639 3.3259 0.5676 -1.2578 5.7030 Eu-154 19.2000 0.0000 3.6717 0.5485 -2.4486 4.8922 Eu-153 17.3400 0.9701 3.8805 0.5963 -1.6297 6.1695 Sm-155 19.5000 0.9639 2.9414 0.5495 -1.3709 5.8007 Sm-154 18.5215 1.9340 3.2136 0.5576 -0.3117 6.6726 Sm-153 20.0000 0.9701 3.6781 0.5579 -1.8633 6.3072 Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904 Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141 Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033 -------------------------------------------------------- Table 3. Gamma-ray strength function for Gd-157 -------------------------------------------------------- K0 = 2.000 E0 = 4.500 (MeV) * E1: ER = 11.20 (MeV) EG = 2.60 (MeV) SIG = 180.00 (mb) ER = 15.20 (MeV) EG = 3.60 (MeV) SIG = 242.00 (mb) ER = 3.00 (MeV) EG = 1.00 (MeV) SIG = 0.26 (mb) ER = 5.40 (MeV) EG = 0.20 (MeV) SIG = 0.50 (mb) * M1: ER = 7.60 (MeV) EG = 4.00 (MeV) SIG = 1.78 (mb) * E2: ER = 11.68 (MeV) EG = 4.23 (MeV) SIG = 3.68 (mb) -------------------------------------------------------- References 1) Karzhavina, E.N., et al.: Yad. Fiz., 9, 897 (1969). 2) Coceva, C., Stefanon, M.: Nucl. Phys., A315, 1 (1979). 3) Mughabghab, s.f. and garber, d.i.: "neutron cross sections, vol. 1, resonance parameters", bnl 325, 3rd ed., vol. 1, (1973). 4) Leinweber, G et al.: Nucl. Sci. Eng., 154, 261 (2006). 5) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 6) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 7) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 8) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 9) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 10) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 11) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 12) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 13) Kalbach,C.: Phys. Rev. C33, 818 (1986). 14) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 15) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 16) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 17) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 18) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 19) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).