64-Gd-157 JAEA+ EVAL-Aug18 N.Iwamoto,A.Zukeran,K.Shibata DIST-DEC21 20180830 ----JENDL-5 MATERIAL 6440 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by A.Zukeran,K.Shibata. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 18-08 Resolved resonance parameters were revised. MF3,6/MT600-849 were added by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,41,102-107) added MF= 1 General information MT=451 Descriptive data and directory MF=2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance parameters for MLBW formula: below 1.0 keV Evaluation for JENDL-2 was made on the basis of the data measured by Moller et al./1/, Ribon/2/ and Karzhavina et al./3/ The average radiation width of 0.121 eV was assumed. The scattering radius was taken from Mughabghab and garber/4/ For JENDL-3, total spin J of some resonances was estimated with a random number method. In JENDL-4, the data for 0.0314 - 294.16 eV were replaced with the ones obtained by Leinweber et al./5/ It should be noted that the background capture cross sections are required below 0.1 eV to reproduce the ICSBEP benchmarks. The background is equal to the difference between the capture cross sections of JENDL-3.3 and those of the calculations using Leinweber's parameters. In JENDL-5a, the parameters between 2.83 and 990 eV were replaced with the ones obtained by Kang et al.// The parameters of the first resonance were adopted with the ones obtained by the REFIT code. The data were measured with ANNRI in J-PARC MLF. Unresolved resonance region : 1.0 keV - 100.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /6/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /7/ and CCONE /8/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 2.5467E+05 Elastic 1.0174E+03 n,gamma 2.5365E+05 7.9000E+02 n,alpha 4.2341E-04 7.1627E-06 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /8/. MT= 16 (n,2n) cross section Calculated with CCONE code /8/. MT= 17 (n,3n) cross section Calculated with CCONE code /8/. MT= 22 (n,na) cross section Calculated with CCONE code /8/. MT= 24 (n,2na) cross section Calculated with CCONE code /8/. MT= 28 (n,np) cross section Calculated with CCONE code /8/. MT= 32 (n,nd) cross section Calculated with CCONE code /8/. MT= 41 (n,2np) cross section Calculated with CCONE code /8/. MT= 51-91 (n,n') cross section Calculated with CCONE code /8/. MT=102 Capture cross section Calculated with CCONE code /8/. MT=103,600-649 (n,p) cross section Calculated with CCONE code /8/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /8/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /8/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /8/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /8/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /8/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /8/. MT= 17 (n,3n) reaction Calculated with CCONE code /8/. MT= 22 (n,na) reaction Calculated with CCONE code /8/. MT= 24 (n,2na) reaction Calculated with CCONE code /8/. MT= 28 (n,np) reaction Calculated with CCONE code /8/. MT= 32 (n,nd) reaction Calculated with CCONE code /8/. MT= 41 (n,2np) reaction Calculated with CCONE code /8/. MT= 51-91 (n,n') reaction Calculated with CCONE code /8/. MT=102 Capture reaction Calculated with CCONE code /8/. MT=600-649 (n,p) reaction Calculated with CCONE code /8/. MT=650-699 (n,d) reaction Calculated with CCONE code /8/. MT=700-749 (n,t) reaction Calculated with CCONE code /8/. MT=750-799 (n,He3) reaction Calculated with CCONE code /8/. MT=800-849 (n,a) reaction Calculated with CCONE code /8/. ***************************************************************** Nuclear Model Calculation with CCONE code /8/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,4,6,9,15,24 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./9/ (+) proton omp: Koning,A.J. and Delaroche,J.P./10/ (+) deuteron omp: Lohr,J.M. and Haeberli,W./11/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./12/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./12/ alpha omp: Huizenga,J.R. and Igo,G./13/ (+) (+) omp parameters were modified. 2) Two-component exciton model/14/ * Global parametrization of Koning-Duijvestijn/15/ was used. * Gamma emission channel/16/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/17/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/18/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/19/,/20/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Gd-157 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 3/2 - * 1 0.05453 5/2 - * 2 0.06392 5/2 + 3 0.11572 7/2 + 4 0.13145 7/2 - * 5 0.18023 9/2 + 6 0.22731 9/2 - * 7 0.27225 11/2 + 8 0.31500 9/2 + 9 0.34725 11/2 - * 10 0.36110 13/2 + 11 0.37200 13/2 + 12 0.42660 11/2 - 13 0.43443 5/2 - 14 0.47463 3/2 + 15 0.47887 13/2 - * 16 0.50900 15/2 + 17 0.51467 7/2 - 18 0.52485 5/2 + 19 0.56600 9/2 + 20 0.57946 7/2 + 21 0.60759 5/2 + 22 0.61240 17/2 + 23 0.61748 9/2 - 24 0.64056 15/2 - * 25 0.65570 9/2 + 26 0.66453 9/2 + 27 0.68290 1/2 + 28 0.68323 3/2 + 29 0.68667 5/2 + 30 0.70139 1/2 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Gd-158 19.3000 1.9093 2.8152 0.5596 -0.4648 6.8458 Gd-157 20.0000 0.9577 3.0516 0.5315 -1.2892 5.6268 Gd-156 19.0000 1.9215 3.2702 0.5513 -0.3880 6.7098 Gd-155 20.5000 0.9639 3.7045 0.5229 -1.4800 5.7609 Eu-157 18.0565 0.9577 2.7904 0.5507 -0.9395 5.3155 Eu-156 18.0000 0.0000 2.8275 0.5361 -1.7176 4.0906 Eu-155 17.9000 0.9639 3.3259 0.5676 -1.2578 5.7030 Eu-154 19.2000 0.0000 3.6717 0.5485 -2.4486 4.8922 Sm-156 18.7270 1.9215 2.8073 0.5682 -0.4051 6.8309 Sm-155 19.5000 0.9639 2.9414 0.5495 -1.3709 5.8007 Sm-154 18.5215 1.9340 3.2136 0.5576 -0.3117 6.6726 Sm-153 20.0000 0.9701 3.6781 0.5579 -1.8633 6.3072 Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904 Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141 -------------------------------------------------------- Table 3. Gamma-ray strength function for Gd-158 -------------------------------------------------------- K0 = 2.000 E0 = 4.500 (MeV) * E1: ER = 11.70 (MeV) EG = 2.60 (MeV) SIG = 165.00 (mb) ER = 14.90 (MeV) EG = 3.80 (MeV) SIG = 249.00 (mb) ER = 3.10 (MeV) EG = 1.00 (MeV) SIG = 0.35 (mb) ER = 6.40 (MeV) EG = 1.50 (MeV) SIG = 3.00 (mb) * M1: ER = 7.58 (MeV) EG = 4.00 (MeV) SIG = 1.79 (mb) * E2: ER = 11.65 (MeV) EG = 4.21 (MeV) SIG = 3.66 (mb) -------------------------------------------------------- References 1) Moller, H.B., et al.: Nucl. Sci. Eng., 8, 183 (1960). 2) Ribon, P.: CEA-N-1149 (1969). 3) Karzhavina, E.N., et al.: Jaderno-Fizicheskie Issledovanija, 6, 135 (1968). 4) Mughabghab, S.F. and Garber, D.I.: "Neutron Cross Sections, Vol.1, Resonance Parameters", BNL 325, 3rd Ed., Vol. 1, (1973). 5) Leinweber, G et al.: Nucl. Sci. Eng., 154, 261 (2006). 6) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 7) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 8) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 9) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 10) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 11) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 12) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 13) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 14) Kalbach,C.: Phys. Rev. C33, 818 (1986). 15) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 16) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 17) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 18) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 19) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 20) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).