64-Gd-158 JAEA+ EVAL-Dec09 N.Iwamoto,A.Zukeran,K.Shibata DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6443 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by A.Zukeran,K.Shibata. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,102-107) added MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula): below 6.58 keV In JENDL-3.3, parameters were mainly taken from the experimental data of Rahn et al./1/. The average radiative capture width of 0.088 eV was assumed. A negative resonance was added so as to reproduce the thermal capture cross section given by Mughabghab and Garber/4/. Scattering radius of 6.5 fm was adopted from ref./2/ In JENDL-4, the parameters for 4 resonances between 22.3 and 277.4 eV were replace with those obtained by Leinweber et al./3/ The energy of the negative resonance was adjusted. Unresolved resonance region : 6.58 keV - 250.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /4/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /5/ and CCONE /6/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 5.8418e+00 Elastic 3.6411e+00 n,gamma 2.2007e+00 7.2063e+01 n,alpha 9.1239e-12 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /6/. MT= 16 (n,2n) cross section Calculated with CCONE code /6/. MT= 17 (n,3n) cross section Calculated with CCONE code /6/. MT= 22 (n,na) cross section Calculated with CCONE code /6/. MT= 24 (n,2na) cross section Calculated with CCONE code /6/. MT= 28 (n,np) cross section Calculated with CCONE code /6/. MT= 32 (n,nd) cross section Calculated with CCONE code /6/. MT= 51-91 (n,n') cross section Calculated with CCONE code /6/. MT=102 Capture cross section Calculated with CCONE code /6/. MT=103 (n,p) cross section Calculated with CCONE code /6/. MT=104 (n,d) cross section Calculated with CCONE code /6/. MT=105 (n,t) cross section Calculated with CCONE code /6/. MT=106 (n,He3) cross section Calculated with CCONE code /6/. MT=107 (n,a) cross section Calculated with CCONE code /6/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /6/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /6/. MT= 17 (n,3n) reaction Calculated with CCONE code /6/. MT= 22 (n,na) reaction Calculated with CCONE code /6/. MT= 24 (n,2na) reaction Calculated with CCONE code /6/. MT= 28 (n,np) reaction Calculated with CCONE code /6/. MT= 32 (n,nd) reaction Calculated with CCONE code /6/. MT= 51-91 (n,n') reaction Calculated with CCONE code /6/. MT=102 Capture reaction Calculated with CCONE code /6/. ***************************************************************** Nuclear Model Calculation with CCONE code /6/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,3,4,15 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./7/ (+) proton omp: Koning,A.J. and Delaroche,J.P./8/ deuteron omp: Lohr,J.M. and Haeberli,W./9/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ alpha omp: Huizenga,J.R. and Igo,G./11/ (+) omp parameters were modified. 2) Two-component exciton model/12/ * Global parametrization of Koning-Duijvestijn/13/ was used. * Gamma emission channel/14/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/15/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/16/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/17/,/18/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Gd-158 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.07951 2 + * 2 0.26146 4 + * 3 0.53902 6 + * 4 0.90412 8 + * 5 0.97715 1 - 6 1.02370 2 - 7 1.04164 3 - 8 1.15897 4 - 9 1.17648 5 - 10 1.18714 2 + 11 1.19617 0 + 12 1.25987 2 + 13 1.26351 1 - 14 1.26552 3 + 15 1.35000 10 + * 16 1.35847 4 + 17 1.37194 6 - 18 1.38063 4 + 19 1.39100 7 - 20 1.40294 3 - 21 1.40670 4 + 22 1.41400 2 - 23 1.44000 5 + 24 1.45235 0 + 25 1.48142 5 + 26 1.49910 5 + 27 1.51748 2 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Gd-159 19.9000 0.9517 2.6302 0.5300 -1.1252 5.4620 Gd-158 19.3000 1.9093 2.8152 0.5596 -0.4648 6.8458 Gd-157 20.0000 0.9577 3.0516 0.5315 -1.2892 5.6268 Gd-156 19.0000 1.9215 3.2702 0.5513 -0.3880 6.7098 Eu-158 18.8084 0.0000 2.4374 0.4933 -1.3276 3.5000 Eu-157 18.0565 0.9577 2.7904 0.5507 -0.9395 5.3155 Eu-156 18.0000 0.0000 2.8275 0.5361 -1.7176 4.0906 Eu-155 17.9000 0.9639 3.3259 0.5676 -1.2578 5.7030 Sm-157 19.4276 0.9577 2.5335 0.5242 -0.9010 5.1968 Sm-156 18.7270 1.9215 2.8073 0.5682 -0.4051 6.8309 Sm-155 19.5000 0.9639 2.9414 0.5495 -1.3709 5.8007 Sm-154 18.5215 1.9340 3.2136 0.5576 -0.3117 6.6726 Sm-153 20.0000 0.9701 3.6781 0.5579 -1.8633 6.3072 Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904 -------------------------------------------------------- Table 3. Gamma-ray strength function for Gd-159 -------------------------------------------------------- K0 = 2.000 E0 = 4.500 (MeV) * E1: ER = 11.70 (MeV) EG = 2.60 (MeV) SIG = 165.00 (mb) ER = 14.90 (MeV) EG = 3.80 (MeV) SIG = 249.00 (mb) ER = 3.20 (MeV) EG = 1.20 (MeV) SIG = 0.20 (mb) ER = 4.90 (MeV) EG = 0.20 (MeV) SIG = 0.30 (mb) * M1: ER = 7.57 (MeV) EG = 4.00 (MeV) SIG = 1.39 (mb) * E2: ER = 11.63 (MeV) EG = 4.20 (MeV) SIG = 3.65 (mb) -------------------------------------------------------- References 1) Rahn, F., et al.: Phys. Rev., C10, 1904 (1974). 2) Mughabghab, S.F. and Garber, D.I.: "Neutron Cross Sections, Vol.1, Resonance Parameters", BNL 325, 3rd ed., Vol. 1, (1973). 3) Leinweber, G et al.: Nucl. Sci. Eng., 154, 261 (2006). 4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 5) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 8) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 9) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 10) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 11) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 12) Kalbach,C.: Phys. Rev. C33, 818 (1986). 13) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 14) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 15) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 16) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 17) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 18) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).