64-Gd-160 JAEA+ EVAL-Dec09 N.Iwamoto,A.Zukeran,K.Shibata DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6449 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by A.Zukeran,K.Shibata. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,33,102-107) added MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 4.224 keV Evaluation of JENDL-2 was made mainly on the basis of the experimental data of Rahn et al./1/ The average radiation width was assumed to be 0.088 eV. A negative resonance was added so as to reproduce the thermal capture cross section given by Mughabghab/2,3/. Scattering radius of 6.8 fm was based on the recommendation in ref./2/ In JENDL-4, the parameters for 222.2-eV resonance were replaced with those obtained by Leiweber et al./4/ Unresolved resonance region : 4.224 keV - 250.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /5/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /6/ and CCONE /7/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 4.9028e+00 Elastic 4.1173e+00 n,gamma 7.8551e-01 1.1801e+01 n,alpha 4.4645e-15 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /7/. MT= 16 (n,2n) cross section Calculated with CCONE code /7/. MT= 17 (n,3n) cross section Calculated with CCONE code /7/. MT= 22 (n,na) cross section Calculated with CCONE code /7/. MT= 24 (n,2na) cross section Calculated with CCONE code /7/. MT= 28 (n,np) cross section Calculated with CCONE code /7/. MT= 32 (n,nd) cross section Calculated with CCONE code /7/. MT= 33 (n,nt) cross section Calculated with CCONE code /7/. MT= 51-91 (n,n') cross section Calculated with CCONE code /7/. MT=102 Capture cross section Calculated with CCONE code /7/. MT=103 (n,p) cross section Calculated with CCONE code /7/. MT=104 (n,d) cross section Calculated with CCONE code /7/. MT=105 (n,t) cross section Calculated with CCONE code /7/. MT=106 (n,He3) cross section Calculated with CCONE code /7/. MT=107 (n,a) cross section Calculated with CCONE code /7/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /7/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /7/. MT= 17 (n,3n) reaction Calculated with CCONE code /7/. MT= 22 (n,na) reaction Calculated with CCONE code /7/. MT= 24 (n,2na) reaction Calculated with CCONE code /7/. MT= 28 (n,np) reaction Calculated with CCONE code /7/. MT= 32 (n,nd) reaction Calculated with CCONE code /7/. MT= 33 (n,nt) reaction Calculated with CCONE code /7/. MT= 51-91 (n,n') reaction Calculated with CCONE code /7/. MT=102 Capture reaction Calculated with CCONE code /7/. ***************************************************************** Nuclear Model Calculation with CCONE code /7/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,3,4,17 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./8/ (+) proton omp: Koning,A.J. and Delaroche,J.P./9/ deuteron omp: Lohr,J.M. and Haeberli,W./10/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/ alpha omp: Huizenga,J.R. and Igo,G./12/ (+) omp parameters were modified. 2) Two-component exciton model/13/ * Global parametrization of Koning-Duijvestijn/14/ was used. * Gamma emission channel/15/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/16/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/17/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/18/,/19/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Gd-160 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.07526 2 + * 2 0.24852 4 + * 3 0.51475 6 + * 4 0.86790 8 + * 5 0.91300 2 - 6 0.94600 5 - 7 0.98840 2 + 8 1.01600 4 - 9 1.05754 3 + 10 1.07042 4 + 11 1.14778 4 + 12 1.19269 5 + 13 1.22428 1 - 14 1.26107 5 + 15 1.29010 3 - 16 1.29557 4 + 17 1.30070 10 + * 18 1.32573 0 + 19 1.33111 6 + 20 1.35109 2 + 21 1.37706 2 + 22 1.37956 0 + 23 1.38864 2 + 24 1.39280 6 + 25 1.42786 5 - 26 1.43599 2 + 27 1.46030 3 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Gd-161 19.6000 0.9457 2.2447 0.5241 -0.8691 5.1638 Gd-160 19.1372 1.8974 2.4922 0.5804 -0.6190 7.1078 Gd-159 19.9000 0.9517 2.6302 0.5300 -1.1252 5.4620 Gd-158 19.3000 1.9093 2.8152 0.5596 -0.4648 6.8458 Eu-160 19.0105 0.0000 2.2595 0.3149 0.0142 1.0000 Eu-159 18.2543 0.9517 2.5499 0.5516 -0.9411 5.3313 Eu-158 18.8084 0.0000 2.4374 0.4933 -1.3276 3.5000 Eu-157 18.0565 0.9577 2.7904 0.5507 -0.9395 5.3155 Sm-159 19.6278 0.9517 2.4416 0.3052 0.9489 1.9517 Sm-158 18.9322 1.9093 2.7143 0.5948 -0.8271 7.3891 Sm-157 19.4276 0.9577 2.5335 0.5242 -0.9010 5.1968 Sm-156 18.7270 1.9215 2.8073 0.5682 -0.4051 6.8309 Sm-155 19.5000 0.9639 2.9414 0.5495 -1.3709 5.8007 Sm-154 18.5215 1.9340 3.2136 0.5576 -0.3117 6.6726 -------------------------------------------------------- Table 3. Gamma-ray strength function for Gd-161 -------------------------------------------------------- K0 = 2.000 E0 = 4.500 (MeV) * E1: ER = 12.23 (MeV) EG = 2.77 (MeV) SIG = 215.00 (mb) ER = 15.96 (MeV) EG = 5.28 (MeV) SIG = 233.00 (mb) ER = 3.30 (MeV) EG = 1.50 (MeV) SIG = 0.40 (mb) * M1: ER = 7.54 (MeV) EG = 4.00 (MeV) SIG = 1.47 (mb) * E2: ER = 11.58 (MeV) EG = 4.18 (MeV) SIG = 3.63 (mb) -------------------------------------------------------- References 1) Rahn, F., et al.: Phys. Rev., C10, 1904 (1974). 2) Mughabghab, S.F. and Garber, D.I.: "Neutron Cross Sections, Vol. 1, Resonance Parameters", BNL 325, 3rd ed., Vol. 1, (1973). 3) Mughabghab, S.F.: "Neutron Cross Sections, Vol. I, Part B", Academic Press (1984). 4) Leinweber, G et al.: Nucl. Sci. Eng., 154, 261 (2006). 5) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 6) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 7) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 8) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 9) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 10) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 11) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 12) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 13) Kalbach,C.: Phys. Rev. C33, 818 (1986). 14) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 15) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 16) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 17) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 18) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 19) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).