65-Tb-159 JAEA+ EVAL-Dec09 N.Iwamoto,A.Zukeran DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6525 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by A.Zukeran. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,28,32,33,41,102-105,107) JENDL/AD-2017 adopted (MF8/MT106) added (MF10/MT16) JENDL/AD-2017 based MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula): below 1.188keV In the JENDL-2 evaluation, resonance parameters were mainly taken from the experimental data by Ohkubo and Kawarasaki /1/ and by Derrien and Alix/2/. The average radiation width was assumed to be 0.097 eV. A negative resonance was added at -0.1 eV so as to reproduce the capture cross section of 25.5+-1.1 barns and the elastic scattering of 20+-2 barns at 0.0253 eV/3/. Scattering radius of 8.3 fm was taken from the recommendation by Mughabghab and Garber /3/. In JENDL-4, the data for 3.36 - 14.5 eV were replaced with the ones obtained by Vertebnyj et al./4/ The parameters for the negative resonance were re-adjusted. The scattering radius was changed to 7.8 fm. Unresolved resonance region : 1.188 keV - 130.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /5/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /6/ and CCONE /7/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 3.0033e+01 Elastic 6.8988e+00 n,gamma 2.3134e+01 4.0913e+02 n,alpha 2.1716e-09 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /7/. MT= 16 (n,2n) cross section Calculated with CCONE code /7/. MT= 17 (n,3n) cross section Calculated with CCONE code /7/. MT= 22 (n,na) cross section Calculated with CCONE code /7/. MT= 28 (n,np) cross section Calculated with CCONE code /7/. MT= 32 (n,nd) cross section Calculated with CCONE code /7/. MT= 33 (n,nt) cross section Calculated with CCONE code /7/. MT= 41 (n,2np) cross section Calculated with CCONE code /7/. MT= 51-91 (n,n') cross section Calculated with CCONE code /7/. MT=102 Capture cross section Calculated with CCONE code /7/. MT=103 (n,p) cross section Calculated with CCONE code /7/. MT=104 (n,d) cross section Calculated with CCONE code /7/. MT=105 (n,t) cross section Calculated with CCONE code /7/. MT=106 (n,He3) cross section Calculated with CCONE code /7/. MT=107 (n,a) cross section Calculated with CCONE code /7/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /7/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /7/. MT= 17 (n,3n) reaction Calculated with CCONE code /7/. MT= 22 (n,na) reaction Calculated with CCONE code /7/. MT= 28 (n,np) reaction Calculated with CCONE code /7/. MT= 32 (n,nd) reaction Calculated with CCONE code /7/. MT= 33 (n,nt) reaction Calculated with CCONE code /7/. MT= 41 (n,2np) reaction Calculated with CCONE code /7/. MT= 51-91 (n,n') reaction Calculated with CCONE code /7/. MT=102 Capture reaction Calculated with CCONE code /7/. ***************************************************************** Nuclear Model Calculation with CCONE code /7/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,3,5,10,17 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./8/ (+) proton omp: Koning,A.J. and Delaroche,J.P./9/ (+) deuteron omp: Lohr,J.M. and Haeberli,W./10/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/ alpha omp: McFadden,L. and Satchler,G.R./12/ (+) (+) omp parameters were modified. 2) Two-component exciton model/13/ * Global parametrization of Koning-Duijvestijn/14/ was used. * Gamma emission channel/15/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/16/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/17/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/18/,/19/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Tb-159 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 3/2 + * 1 0.05800 5/2 + * 2 0.13750 7/2 + * 3 0.24115 9/2 + * 4 0.34828 5/2 + 5 0.36205 11/2 + * 6 0.36355 5/2 - 7 0.38840 7/2 - 8 0.42820 7/2 + 9 0.45460 9/2 - 10 0.51040 13/2 + * 11 0.53200 9/2 + 12 0.53670 7/2 + 13 0.54510 11/2 - 14 0.54760 7/2 - 15 0.58081 1/2 + 16 0.61762 3/2 + 17 0.66891 15/2 + * 18 0.67424 5/2 + 19 0.67790 9/2 - 20 0.76130 7/2 + 21 0.77710 7/2 + 22 0.79900 15/2 - 23 0.82220 11/2 - 24 0.85496 1/2 - 25 0.85730 9/2 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Tb-160 18.9000 0.0000 2.5855 0.5446 -1.9885 4.4661 Tb-159 21.0000 0.9517 2.9024 0.4767 -0.7563 4.8234 Tb-158 19.3000 0.0000 3.0376 0.4617 -1.2200 3.2269 Tb-157 18.0565 0.9577 3.3696 0.5538 -1.1365 5.5068 Gd-159 19.9000 0.9517 2.6302 0.5300 -1.1252 5.4620 Gd-158 19.3000 1.9093 2.8152 0.5596 -0.4648 6.8458 Gd-157 20.0000 0.9577 3.0516 0.5315 -1.2892 5.6268 Gd-156 19.0000 1.9215 3.2702 0.5513 -0.3880 6.7098 Eu-158 18.8084 0.0000 2.4374 0.4933 -1.3276 3.5000 Eu-157 18.0565 0.9577 2.7904 0.5507 -0.9395 5.3155 Eu-156 18.0000 0.0000 2.8275 0.5361 -1.7176 4.0906 Eu-155 17.9000 0.9639 3.3259 0.5676 -1.2578 5.7030 Eu-154 19.2000 0.0000 3.6717 0.5485 -2.4486 4.8922 Eu-153 17.3400 0.9701 3.8805 0.5963 -1.6297 6.1695 -------------------------------------------------------- Table 3. Gamma-ray strength function for Tb-160 -------------------------------------------------------- K0 = 1.900 E0 = 4.500 (MeV) * E1: ER = 12.22 (MeV) EG = 2.34 (MeV) SIG = 160.00 (mb) ER = 15.67 (MeV) EG = 4.97 (MeV) SIG = 220.00 (mb) ER = 5.60 (MeV) EG = 1.80 (MeV) SIG = 5.00 (mb) ER = 3.00 (MeV) EG = 1.50 (MeV) SIG = 0.60 (mb) * M1: ER = 7.55 (MeV) EG = 4.00 (MeV) SIG = 1.37 (mb) * E2: ER = 11.60 (MeV) EG = 4.19 (MeV) SIG = 3.75 (mb) -------------------------------------------------------- References 1) Ohkubo, M. and Kawarasaki, Y.: JAERI-M 7545 (1978). 2) Derrien, H. and Alix, M.: CEA-N-1867 (1975). 3) Mughabghab, S.F. and Garber, D.I.: "Neutron Cross Sections, Vol. 1, Resonance Parameters", BNL 325, 3rd ed., Vol. 1, (1973). 4) Vertebnyj, V.P. et al.: 83 Kiev, 3, 37 (1983). 5) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 6) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 7) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 8) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 9) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 10) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 11) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 12) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 13) Kalbach,C.: Phys. Rev. C33, 818 (1986). 14) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 15) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 16) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 17) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 18) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 19) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).