65-Tb-160 JAEA+ EVAL-Dec09 N.Iwamoto,A.Zukeran DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6528 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by A.Zukeran. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,33,41,102-107) added MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 9 eV The JENDL-4 evaluation is based on the data obtained by Vertebnyj et al./1/ A radiation width fo 100 meV was assumed for the 8.27-eV resonance. A scattering radius of 7.8 fm, which was the same as that for Tb-159, was used. Unresolved resonance region : 9.0 eV - 100.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /2/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /3/ and CCONE /4/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 3.5548e+02 Elastic 4.7921e+00 n,gamma 3.5069e+02 3.5881e+03 n,alpha 2.9686e-06 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 24 (n,2na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT= 32 (n,nd) cross section Calculated with CCONE code /4/. MT= 33 (n,nt) cross section Calculated with CCONE code /4/. MT= 41 (n,2np) cross section Calculated with CCONE code /4/. MT= 51-91 (n,n') cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. MT=103 (n,p) cross section Calculated with CCONE code /4/. MT=104 (n,d) cross section Calculated with CCONE code /4/. MT=105 (n,t) cross section Calculated with CCONE code /4/. MT=106 (n,He3) cross section Calculated with CCONE code /4/. MT=107 (n,a) cross section Calculated with CCONE code /4/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 24 (n,2na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 33 (n,nt) reaction Calculated with CCONE code /4/. MT= 41 (n,2np) reaction Calculated with CCONE code /4/. MT= 51-91 (n,n') reaction Calculated with CCONE code /4/. MT=102 Capture reaction Calculated with CCONE code /4/. ***************************************************************** Nuclear Model Calculation with CCONE code /4/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,3,13 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./5/ (+) proton omp: Koning,A.J. and Delaroche,J.P./6/ deuteron omp: Lohr,J.M. and Haeberli,W./7/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ alpha omp: McFadden,L. and Satchler,G.R./9/ (+) omp parameters were modified. 2) Two-component exciton model/10/ * Global parametrization of Koning-Duijvestijn/11/ was used. * Gamma emission channel/12/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/13/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/14/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/15/,/16/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Tb-160 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 3 - * 1 0.06369 1 - 2 0.06411 4 + 3 0.07887 4 - * 4 0.07909 0 - 5 0.10558 2 - 6 0.12648 5 + 7 0.13322 1 - 8 0.13873 1 + 9 0.13947 2 - 10 0.15645 3 - 11 0.16775 2 + 12 0.16870 4 - 13 0.17683 5 - * 14 0.20040 3 + 15 0.22263 0 + 16 0.23278 1 + 17 0.23698 3 - 18 0.24416 4 - 19 0.25754 4 - 20 0.26523 4 + 21 0.26882 2 + 22 0.27900 4 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Tb-161 18.4519 0.9457 2.4950 0.5607 -1.0970 5.5427 Tb-160 18.9000 0.0000 2.5855 0.5446 -1.9885 4.4661 Tb-159 21.0000 0.9517 2.9024 0.4767 -0.7563 4.8234 Tb-158 19.3000 0.0000 3.0376 0.4617 -1.2200 3.2269 Gd-160 19.1372 1.8974 2.4922 0.5804 -0.6190 7.1078 Gd-159 19.9000 0.9517 2.6302 0.5300 -1.1252 5.4620 Gd-158 19.3000 1.9093 2.8152 0.5596 -0.4648 6.8458 Gd-157 20.0000 0.9577 3.0516 0.5315 -1.2892 5.6268 Gd-156 19.0000 1.9215 3.2702 0.5513 -0.3880 6.7098 Eu-159 18.2543 0.9517 2.5499 0.5516 -0.9411 5.3313 Eu-158 18.8084 0.0000 2.4374 0.4933 -1.3276 3.5000 Eu-157 18.0565 0.9577 2.7904 0.5507 -0.9395 5.3155 Eu-156 18.0000 0.0000 2.8275 0.5361 -1.7176 4.0906 Eu-155 17.9000 0.9639 3.3259 0.5676 -1.2578 5.7030 Eu-154 19.2000 0.0000 3.6717 0.5485 -2.4486 4.8922 -------------------------------------------------------- Table 3. Gamma-ray strength function for Tb-161 -------------------------------------------------------- K0 = 1.900 E0 = 4.500 (MeV) * E1: ER = 12.22 (MeV) EG = 2.34 (MeV) SIG = 160.00 (mb) ER = 15.67 (MeV) EG = 4.97 (MeV) SIG = 220.00 (mb) ER = 5.60 (MeV) EG = 1.80 (MeV) SIG = 5.00 (mb) ER = 3.00 (MeV) EG = 1.50 (MeV) SIG = 0.60 (mb) * M1: ER = 7.54 (MeV) EG = 4.00 (MeV) SIG = 1.36 (mb) * E2: ER = 11.58 (MeV) EG = 4.18 (MeV) SIG = 3.74 (mb) -------------------------------------------------------- References 1) Vertebnyj, V.P. et al.: 83 Kiev, 3, 37 (1983). 2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 3) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 9) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 10) Kalbach,C.: Phys. Rev. C33, 818 (1986). 11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).