65-Tb-161 JAEA EVAL-Sep21 N.Iwamoto DIST-DEC21 20210920 ----JENDL-5 MATERIAL 6531 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 21-09 Evaluated with CCONE code by N.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Scattering radius only AP is assumed to be 7.49 fm. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 1.58025E+01 Elastic 7.07487E+00 n,gamma 8.53942E+00 2.65902E+03 n,alpha 5.08500E-15 1.58782E-12 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /1/. MT= 2 Elastic scattering cross section Calculated with CCONE code /1/. MT= 4,51-91 (n,n') cross section Calculated with CCONE code /1/. MT= 5 Total reaction (except fission) cross section Calculated with CCONE code /1/. MT= 16 (n,2n) cross section Calculated with CCONE code /1/. MT= 17 (n,3n) cross section Calculated with CCONE code /1/. MT= 22 (n,na) cross section Calculated with CCONE code /1/. MT= 28 (n,np) cross section Calculated with CCONE code /1/. MT= 32 (n,nd) cross section Calculated with CCONE code /1/. MT= 33 (n,nt) cross section Calculated with CCONE code /1/. MT= 41 (n,2np) cross section Calculated with CCONE code /1/. MT=102 Capture cross section Calculated with CCONE code /1/. The thermal cross section was derived from Shibata/2/. Below 1.70 eV the 1/v cross section was assumed. MT=103,600-649 (n,p) cross section Calculated with CCONE code /1/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /1/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /1/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /1/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /1/. MF= 4 Angular distributions of secondary particles MT= 2 Elastic scattering Calculated with CCONE code /1/. MF= 6 Energy-angle distributions of emitted particles MT= 5 Total reaction (except fission) reaction Calculated with CCONE code /1/. MT= 16 (n,2n) reaction Calculated with CCONE code /1/. MT= 17 (n,3n) reaction Calculated with CCONE code /1/. MT= 22 (n,na) reaction Calculated with CCONE code /1/. MT= 28 (n,np) reaction Calculated with CCONE code /1/. MT= 32 (n,nd) reaction Calculated with CCONE code /1/. MT= 33 (n,nt) reaction Calculated with CCONE code /1/. MT= 41 (n,2np) reaction Calculated with CCONE code /1/. MT= 51- 91 (n,n') reaction Calculated with CCONE code /1/. MT=102 Capture reaction Calculated with CCONE code /1/. MT=600-649 (n,p) reaction Calculated with CCONE code /1/. MT=650-699 (n,d) reaction Calculated with CCONE code /1/. MT=700-749 (n,t) reaction Calculated with CCONE code /1/. MT=750-799 (n,He3) reaction Calculated with CCONE code /1/. MT=800-849 (n,a) reaction Calculated with CCONE code /1/. MF= 8 Information on decay data MT= 4 (n,n') reaction Decay chain is given in the decay data file. MT= 5 Total reaction (except fission) reaction Decay chain is given in the decay data file. MT= 16 (n,2n) reaction Decay chain is given in the decay data file. MT= 17 (n,3n) reaction Decay chain is given in the decay data file. MT= 22 (n,na) reaction Decay chain is given in the decay data file. MT= 28 (n,np) reaction Decay chain is given in the decay data file. MT= 32 (n,nd) reaction Decay chain is given in the decay data file. MT= 33 (n,nt) reaction Decay chain is given in the decay data file. MT= 41 (n,2np) reaction Decay chain is given in the decay data file. MT=102 Capture reaction Decay chain is given in the decay data file. MT=103 (n,p) reaction Decay chain is given in the decay data file. MT=104 (n,d) reaction Decay chain is given in the decay data file. MT=105 (n,t) reaction Decay chain is given in the decay data file. MT=106 (n,He3) reaction Decay chain is given in the decay data file. MT=107 (n,a) reaction Decay chain is given in the decay data file. ------------------------------------------------------------------ nuclear model calculation with CCONE code /1/ ------------------------------------------------------------------ * Optical model potentials neutron : S.Kunieda et al./3/ proton : global OMP, A.J.Koning and J.P.Delaroche/4/ deuteron: Y.Han et al./5/ triton : folding OMP, A.J.Koning and J.P.Delaroche/4/ He-3 : Y.Xu et al./6/ alpha : M.Avrigeanu and V.Avrigeanu/7/ * Level scheme of Tb-161 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 3/2 + 1 0.056290 5/2 + 2 0.133680 7/2 + 3 0.230720 9/2 + 4 0.314910 5/2 + 5 0.394360 7/2 + 6 0.417230 7/2 - 7 0.480130 5/2 - 8 0.488780 9/2 - 9 0.499000 9/2 + 10 0.520000 1/2 + 11 0.558000 3/2 + 12 0.584000 11/2 - 13 0.585780 7/2 - 14 0.602000 5/2 + 15 0.638000 7/2 + 16 0.698000 7/2 + 17 0.707190 9/2 - ----------------------- * Level density parameters (Gilbert-Cameron model/8/) Energy dependent parameters of Mengoni-Nakajima/9/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Tb-162 19.584 0.000 1.900 0.469 -1.144 3.203 0.039 Tb-161 19.484 0.946 2.502 0.532 -1.082 5.374 0.707 Tb-160 18.461 0.000 2.592 0.489 -1.285 3.409 0.642 Tb-159 19.284 0.952 2.909 0.520 -0.983 5.185 0.669 Gd-161 19.079 0.946 2.252 0.534 -0.917 5.221 0.645 Gd-160 19.384 1.897 2.499 0.556 -0.424 6.741 1.532 Gd-159 19.102 0.952 2.637 0.535 -1.054 5.348 0.916 Gd-158 18.605 1.909 2.822 0.574 -0.532 6.918 1.517 Gd-157 19.164 0.958 3.059 0.559 -1.532 5.927 0.902 Eu-160 19.384 0.000 2.148 0.510 -1.626 3.911 0.000 Eu-159 19.284 0.952 2.560 0.350 0.710 2.517 1.052 Eu-158 19.183 0.000 2.394 0.511 -1.662 3.931 0.000 Eu-157 19.083 0.958 2.799 0.398 0.355 3.168 1.711 Eu-156 17.529 0.000 2.838 0.533 -1.607 3.924 0.434 Eu-155 17.400 0.964 3.332 0.544 -0.877 5.150 1.400 --------------------------------------------------------- * Gamma-ray strength functions for Tb-162 E1: hybrid model(GH)/10/ ER= 12.24 (MeV) EG= 3.11 (MeV) SIG= 137.64 (mb) ER= 16.05 (MeV) EG= 5.22 (MeV) SIG= 275.27 (mb) M1: standard lorentzian model(SLO) ER= 7.52 (MeV) EG= 4.00 (MeV) SIG= 0.96 (mb) E2: standard lorentzian model(SLO) ER= 11.56 (MeV) EG= 4.17 (MeV) SIG= 3.73 (mb) References 1) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007) 2) K.Shibata, J. Nucl. Sci. Technol., 51, 425 (2014) 3) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007) 4) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003) 5) Y.Han et al., Phys. Rev. C 74,044615(2006) 6) Y.Xu et al., Sci. China, Phys. Mech. & Astron., 54[11], 2005 (2011) 7) M.Avrigeanu and V.Avrigeanu, Phys. Rev. C82, 014606 (2010) 8) A.Gilbert and A.G.W.Cameron, Can. J. Phys, 43, 1446 (1965) 9) A.Mengoni and Y.Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994) 10) S.Goriely, Phys. Lett. B436, 10 (1998)