66-Dy-154 JAEA EVAL-Nov09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6619 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,29,32,41,45,102-108,111,112,117) added MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters No resolved resonance parameters Unresolved resonance region : 2.75 eV - 100 keV The unresolved resonance paramters (URP) were determined by ASREP code /1/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /2/ and CCONE /3/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 4.2778e+01 Elastic 6.7425e+00 n,gamma 3.6014e+01 1.4434e+03 n,alpha 7.5605e-03 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /3/. MT= 16 (n,2n) cross section Calculated with CCONE code /3/. MT= 17 (n,3n) cross section Calculated with CCONE code /3/. MT= 22 (n,na) cross section Calculated with CCONE code /3/. MT= 24 (n,2na) cross section Calculated with CCONE code /3/. MT= 28 (n,np) cross section Calculated with CCONE code /3/. MT= 29 (n,n2a) cross section Calculated with CCONE code /3/. MT= 32 (n,nd) cross section Calculated with CCONE code /3/. MT= 41 (n,2np) cross section Calculated with CCONE code /3/. MT= 45 (n,npa) cross section Calculated with CCONE code /3/. MT= 51-91 (n,n') cross section Calculated with CCONE code /3/. MT=102 Capture cross section Calculated with CCONE code /3/. MT=103 (n,p) cross section Calculated with CCONE code /3/. MT=104 (n,d) cross section Calculated with CCONE code /3/. MT=105 (n,t) cross section Calculated with CCONE code /3/. MT=106 (n,He3) cross section Calculated with CCONE code /3/. MT=107 (n,a) cross section Calculated with CCONE code /3/. MT=108 (n,2a) cross section Calculated with CCONE code /3/. MT=111 (n,2p) cross section Calculated with CCONE code /3/. MT=112 (n,pa) cross section Calculated with CCONE code /3/. MT=117 (n,da) cross section Calculated with CCONE code /3/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /3/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /3/. MT= 17 (n,3n) reaction Calculated with CCONE code /3/. MT= 22 (n,na) reaction Calculated with CCONE code /3/. MT= 24 (n,2na) reaction Calculated with CCONE code /3/. MT= 28 (n,np) reaction Calculated with CCONE code /3/. MT= 29 (n,n2a) reaction Calculated with CCONE code /3/. MT= 32 (n,nd) reaction Calculated with CCONE code /3/. MT= 41 (n,2np) reaction Calculated with CCONE code /3/. MT= 45 (n,npa) reaction Calculated with CCONE code /3/. MT= 51-91 (n,n') reaction Calculated with CCONE code /3/. MT=102 Capture reaction Calculated with CCONE code /3/. ***************************************************************** Nuclear Model Calculation with CCONE code /3/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,3,8 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./4/ proton omp: Koning,A.J. and Delaroche,J.P./5/ deuteron omp: Lohr,J.M. and Haeberli,W./6/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/ alpha omp: Huizenga,J.R. and Igo,G./8/ 2) Two-component exciton model/9/ * Global parametrization of Koning-Duijvestijn/10/ was used. * Gamma emission channel/11/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/12/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/13/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /14/,/15/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Dy-154 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.33458 2 + * 2 0.66082 0 + 3 0.74704 4 + * 4 0.90519 2 + 5 1.02711 2 + 6 1.05808 0 + 7 1.20802 3 - 8 1.22408 6 + * 9 1.25186 4 + 10 1.33431 3 + 11 1.39030 2 + 12 1.42039 1 - 13 1.44267 4 + 14 1.50765 2 + 15 1.54600 5 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Dy-155 21.0000 0.9639 3.7427 0.5171 -1.5377 5.8001 Dy-154 18.5215 1.9340 3.0063 0.5322 0.0748 6.1596 Dy-153 19.0261 0.9701 2.7653 0.4977 -0.5414 4.6799 Dy-152 18.3157 1.9467 1.8576 0.5120 0.6531 5.4939 Tb-154 18.4033 0.0000 4.1188 0.4408 -1.0519 2.9000 Tb-153 17.6600 0.9701 3.7693 0.5787 -1.4591 5.9339 Tb-152 18.2003 0.0000 3.1792 0.3607 -0.2477 1.5759 Tb-151 17.4614 0.9765 2.6523 0.5576 -0.8159 5.2323 Gd-153 20.9000 0.9701 3.9793 0.5231 -1.6694 5.9506 Gd-152 18.3157 1.9467 3.2774 0.5203 0.2124 5.9623 Gd-151 18.8247 0.9765 2.9209 0.5214 -0.8124 5.0822 Gd-150 18.1096 1.9596 2.0439 0.5067 0.7184 5.4062 Gd-149 18.6229 0.9831 1.3579 0.4917 -0.0599 4.1611 Gd-148 17.9032 1.9728 0.4709 0.5188 1.0320 5.1646 -------------------------------------------------------- Table 3. Gamma-ray strength function for Dy-155 -------------------------------------------------------- * E1: ER = 12.84 (MeV) EG = 3.41 (MeV) SIG = 131.41 (mb) ER = 15.83 (MeV) EG = 5.08 (MeV) SIG = 262.83 (mb) ER = 4.42 (MeV) EG = 0.90 (MeV) SIG = 3.10 (mb) ER = 3.10 (MeV) EG = 1.60 (MeV) SIG = 3.00 (mb) * M1: ER = 7.63 (MeV) EG = 4.00 (MeV) SIG = 0.88 (mb) * E2: ER = 11.73 (MeV) EG = 4.25 (MeV) SIG = 3.94 (mb) -------------------------------------------------------- References 1) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 2) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 3) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 4) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 5) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 6) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 7) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 8) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 9) Kalbach,C.: Phys. Rev. C33, 818 (1986). 10) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 11) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 12) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 13) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 14) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 15) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).