66-Dy-156 JAEA EVAL-Nov09 N.Iwamoto,S.Chiba DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6625 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 The resolved resonance parameters were evaluated by S.Chiba. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,25,28,29,32,102-108,112) JENDL/AD-2017 adopted (MF9/MT103,112) JENDL/AD-2017 adopted MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 50 eV The evaluation is based on the work of Mughabghab /1/ A scattering radius of 8.1 fm was used. Unresolved resonance region : 50.0 eV - 150.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /2/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /3/ and CCONE /4/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 3.8045e+01 Elastic 5.0102e+00 n,gamma 3.3034e+01 9.8912e+02 n,alpha 1.3561e-04 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 24 (n,2na) cross section Calculated with CCONE code /4/. MT= 25 (n,3na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT= 29 (n,n2a) cross section Calculated with CCONE code /4/. MT= 32 (n,nd) cross section Calculated with CCONE code /4/. MT= 51-91 (n,n') cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. MT=103 (n,p) cross section Calculated with CCONE code /4/. MT=104 (n,d) cross section Calculated with CCONE code /4/. MT=105 (n,t) cross section Calculated with CCONE code /4/. MT=106 (n,He3) cross section Calculated with CCONE code /4/. MT=107 (n,a) cross section Calculated with CCONE code /4/. MT=108 (n,2a) cross section Calculated with CCONE code /4/. MT=112 (n,pa) cross section Calculated with CCONE code /4/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 24 (n,2na) reaction Calculated with CCONE code /4/. MT= 25 (n,3na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 29 (n,n2a) reaction Calculated with CCONE code /4/. MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 51-91 (n,n') reaction Calculated with CCONE code /4/. MT=102 Capture reaction Calculated with CCONE code /4/. ***************************************************************** Nuclear Model Calculation with CCONE code /4/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,4,10,27 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./5/ proton omp: Koning,A.J. and Delaroche,J.P./6/ deuteron omp: Lohr,J.M. and Haeberli,W./7/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ alpha omp: Huizenga,J.R. and Igo,G./9/ 2) Two-component exciton model/10/ * Global parametrization of Koning-Duijvestijn/11/ was used. * Gamma emission channel/12/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/13/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/14/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /15/,/16/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Dy-156 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.13777 2 + * 2 0.40419 4 + * 3 0.67560 0 + 4 0.77044 6 + * 5 0.82864 2 + 6 0.89050 2 + 7 1.02208 3 + 8 1.08828 4 + 9 1.16847 4 + 10 1.21561 8 + * 11 1.29320 1 - 12 1.33556 5 + 13 1.36836 3 - 14 1.38231 2 + 15 1.40700 3 - 16 1.43728 6 + 17 1.44738 2 + 18 1.47610 3 - 19 1.51494 2 + 20 1.52517 6 + 21 1.52628 5 - 22 1.60933 3 - 23 1.62464 0 + 24 1.62742 4 + 25 1.67715 4 + 26 1.67990 0 + 27 1.72502 10 + * 28 1.72879 7 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Dy-157 21.0000 0.9577 3.6038 0.5209 -1.5561 5.8371 Dy-156 19.2000 1.9215 3.4235 0.5154 -0.0016 6.1369 Dy-155 21.0000 0.9639 3.7427 0.5171 -1.5377 5.8001 Dy-154 18.5215 1.9340 3.0063 0.5322 0.0748 6.1596 Tb-156 18.6060 0.0000 3.7106 0.4631 -1.2383 3.2202 Tb-155 17.8584 0.9639 3.7779 0.5648 -1.3347 5.7410 Tb-154 18.4033 0.0000 4.1188 0.4408 -1.0519 2.9000 Tb-153 17.6600 0.9701 3.7693 0.5787 -1.4591 5.9339 Gd-155 20.5000 0.9639 3.7045 0.5229 -1.4800 5.7609 Gd-154 18.5215 1.9340 3.6018 0.5706 -0.6048 7.0075 Gd-153 20.9000 0.9701 3.9793 0.5231 -1.6694 5.9506 Gd-152 18.3157 1.9467 3.2774 0.5203 0.2124 5.9623 Gd-151 18.8247 0.9765 2.9209 0.5214 -0.8124 5.0822 Gd-150 18.1096 1.9596 2.0439 0.5067 0.7184 5.4062 -------------------------------------------------------- Table 3. Gamma-ray strength function for Dy-157 -------------------------------------------------------- * E1: ER = 12.54 (MeV) EG = 3.26 (MeV) SIG = 133.41 (mb) ER = 15.99 (MeV) EG = 5.18 (MeV) SIG = 266.83 (mb) ER = 4.42 (MeV) EG = 0.90 (MeV) SIG = 3.10 (mb) ER = 3.10 (MeV) EG = 1.60 (MeV) SIG = 3.00 (mb) * M1: ER = 7.60 (MeV) EG = 4.00 (MeV) SIG = 0.90 (mb) * E2: ER = 11.68 (MeV) EG = 4.23 (MeV) SIG = 3.91 (mb) -------------------------------------------------------- References 1) Mughabghab, S.F.: "Neutron Cross Sections, Vol. 1, Neutron Resonance Parameters and Thermal Cross Sections, Part B", Academic Press (1984). 2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 3) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 10) Kalbach,C.: Phys. Rev. C33, 818 (1986). 11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).