66-Dy-159 JAEA EVAL-Nov09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6634 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,41,102-105,107) JENDL/AD-2017 adopted (MF8/MT106) added (MF10/MT28,104) JENDL/AD-2017 based MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters No resolved resonance parameters Unresolved resonance region : 0.3 eV - 100 keV The unresolved resonance paramters (URP) were determined by ASREP code /1/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /2/ and CCONE /3/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 6.0778e+02 Elastic 7.2735e+00 n,gamma 6.0024e+02 3.1138e+03 n,p 1.5995e-12 n,alpha 3.7896e-03 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /3/. MT= 16 (n,2n) cross section Calculated with CCONE code /3/. MT= 17 (n,3n) cross section Calculated with CCONE code /3/. MT= 22 (n,na) cross section Calculated with CCONE code /3/. MT= 24 (n,2na) cross section Calculated with CCONE code /3/. MT= 28 (n,np) cross section Calculated with CCONE code /3/. MT= 32 (n,nd) cross section Calculated with CCONE code /3/. MT= 41 (n,2np) cross section Calculated with CCONE code /3/. MT= 51-91 (n,n') cross section Calculated with CCONE code /3/. MT=102 Capture cross section Calculated with CCONE code /3/. MT=103 (n,p) cross section Calculated with CCONE code /3/. MT=104 (n,d) cross section Calculated with CCONE code /3/. MT=105 (n,t) cross section Calculated with CCONE code /3/. MT=106 (n,He3) cross section Calculated with CCONE code /3/. MT=107 (n,a) cross section Calculated with CCONE code /3/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /3/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /3/. MT= 17 (n,3n) reaction Calculated with CCONE code /3/. MT= 22 (n,na) reaction Calculated with CCONE code /3/. MT= 24 (n,2na) reaction Calculated with CCONE code /3/. MT= 28 (n,np) reaction Calculated with CCONE code /3/. MT= 32 (n,nd) reaction Calculated with CCONE code /3/. MT= 41 (n,2np) reaction Calculated with CCONE code /3/. MT= 51-91 (n,n') reaction Calculated with CCONE code /3/. MT=102 Capture reaction Calculated with CCONE code /3/. ***************************************************************** Nuclear Model Calculation with CCONE code /3/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,5,10,15 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./4/ proton omp: Koning,A.J. and Delaroche,J.P./5/ deuteron omp: Lohr,J.M. and Haeberli,W./6/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/ alpha omp: Huizenga,J.R. and Igo,G./8/ 2) Two-component exciton model/9/ * Global parametrization of Koning-Duijvestijn/10/ was used. * Gamma emission channel/11/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/12/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/13/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /14/,/15/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Dy-159 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 3/2 - * 1 0.05663 5/2 - * 2 0.13644 7/2 - * 3 0.17761 5/2 + 4 0.20899 7/2 + 5 0.23585 9/2 - * 6 0.23942 9/2 + 7 0.30959 5/2 - 8 0.32810 11/2 + 9 0.35277 11/2 - 10 0.36110 11/2 - * 11 0.36531 13/2 + 12 0.39527 7/2 - 13 0.41700 3/2 + 14 0.47000 7/2 + 15 0.49760 13/2 - * 16 0.50498 9/2 - 17 0.51547 13/2 - 18 0.53300 1/2 - 19 0.54334 15/2 + 20 0.54900 3/2 + 21 0.56200 1/2 + 22 0.57567 17/2 + 23 0.58600 3/2 - 24 0.60700 7/2 + 25 0.62100 5/2 - 26 0.62700 3/2 - 27 0.63500 11/2 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Dy-160 21.1000 1.8974 2.8705 0.5085 -0.2487 6.3915 Dy-159 19.1000 0.9517 3.1578 0.5560 -1.4112 5.8333 Dy-158 18.8000 1.9093 3.2464 0.5523 -0.3436 6.6448 Dy-157 21.0000 0.9577 3.6038 0.5209 -1.5561 5.8371 Tb-159 21.0000 0.9517 2.9024 0.4767 -0.7563 4.8234 Tb-158 19.3000 0.0000 3.0376 0.4617 -1.2200 3.2269 Tb-157 18.0565 0.9577 3.3696 0.5538 -1.1365 5.5068 Tb-156 18.6060 0.0000 3.7106 0.4631 -1.2383 3.2202 Gd-158 19.3000 1.9093 2.8152 0.5596 -0.4648 6.8458 Gd-157 20.0000 0.9577 3.0516 0.5315 -1.2892 5.6268 Gd-156 19.0000 1.9215 3.2702 0.5513 -0.3880 6.7098 Gd-155 20.5000 0.9639 3.7045 0.5229 -1.4800 5.7609 Gd-154 18.5215 1.9340 3.6018 0.5706 -0.6048 7.0075 Gd-153 20.9000 0.9701 3.9793 0.5231 -1.6694 5.9506 -------------------------------------------------------- Table 3. Gamma-ray strength function for Dy-160 -------------------------------------------------------- * E1: ER = 12.35 (MeV) EG = 3.16 (MeV) SIG = 136.37 (mb) ER = 16.04 (MeV) EG = 5.21 (MeV) SIG = 272.74 (mb) ER = 6.20 (MeV) EG = 4.50 (MeV) SIG = 1.10 (mb) ER = 3.10 (MeV) EG = 1.50 (MeV) SIG = 0.50 (mb) * M1: ER = 7.55 (MeV) EG = 4.00 (MeV) SIG = 0.95 (mb) * E2: ER = 11.60 (MeV) EG = 4.19 (MeV) SIG = 3.87 (mb) -------------------------------------------------------- References 1) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 2) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 3) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 4) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 5) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 6) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 7) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 8) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 9) Kalbach,C.: Phys. Rev. C33, 818 (1986). 10) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 11) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 12) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 13) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 14) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 15) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).