66-Dy-160 JAEA EVAL-Nov09 N.Iwamoto,S.Chiba DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6637 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 The resolved resonance parameters were evaluated by S.Chiba. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,102-105,107) JENDL/AD-2017 adopted (MF8/MT106) added (MF10/MT32,105) JENDL/AD-2017 based MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 2.01 keV The evaluation is based on the work of Mughabghab /1/ A scattering radius of 7.9 fm was used. Unresolved resonance region : 2.01 keV - 200.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /2/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /3/ and CCONE /4/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 6.2144e+01 Elastic 5.4905e+00 n,gamma 5.6654e+01 1.1086e+03 n,alpha 9.4432e-07 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 24 (n,2na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT= 32 (n,nd) cross section Calculated with CCONE code /4/. MT= 51-91 (n,n') cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. MT=103 (n,p) cross section Calculated with CCONE code /4/. MT=104 (n,d) cross section Calculated with CCONE code /4/. MT=105 (n,t) cross section Calculated with CCONE code /4/. MT=106 (n,He3) cross section Calculated with CCONE code /4/. MT=107 (n,a) cross section Calculated with CCONE code /4/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 24 (n,2na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 51-91 (n,n') reaction Calculated with CCONE code /4/. MT=102 Capture reaction Calculated with CCONE code /4/. ***************************************************************** Nuclear Model Calculation with CCONE code /4/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,3,5,18 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./5/ proton omp: Koning,A.J. and Delaroche,J.P./6/ deuteron omp: Lohr,J.M. and Haeberli,W./7/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ alpha omp: Huizenga,J.R. and Igo,G./9/ 2) Two-component exciton model/10/ * Global parametrization of Koning-Duijvestijn/11/ was used. * Gamma emission channel/12/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/13/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/14/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /15/,/16/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Dy-160 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.08679 2 + * 2 0.28382 4 + * 3 0.58106 6 + * 4 0.96617 2 + 5 0.96685 8 + * 6 1.04910 3 + 7 1.15584 4 + 8 1.26475 2 - 9 1.27994 0 + 10 1.28560 1 - 11 1.28671 3 - 12 1.28866 5 + 13 1.34976 2 + 14 1.35867 2 - 15 1.38646 4 - 16 1.39896 3 - 17 1.40847 5 - 18 1.42803 10 + * 19 1.43854 6 + 20 1.45675 0 + 21 1.48950 1 - 22 1.51842 2 + 23 1.52233 4 + 24 1.53515 4 - 25 1.55659 1 + 26 1.58674 5 - 27 1.59437 6 - 28 1.60378 4 + 29 1.60684 6 + 30 1.60786 4 + 31 1.61398 7 - 32 1.61727 7 + 33 1.64326 3 - 34 1.65087 4 - 35 1.65195 4 + 36 1.65366 4 + 37 1.65499 4 + 38 1.67610 4 - 39 1.69436 4 + 40 1.70814 0 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Dy-161 20.0000 0.9457 2.7684 0.5468 -1.4246 5.8432 Dy-160 21.1000 1.8974 2.8705 0.5085 -0.2487 6.3915 Dy-159 19.1000 0.9517 3.1578 0.5560 -1.4112 5.8333 Dy-158 18.8000 1.9093 3.2464 0.5523 -0.3436 6.6448 Tb-160 18.9000 0.0000 2.5855 0.5446 -1.9885 4.4661 Tb-159 21.0000 0.9517 2.9024 0.4767 -0.7563 4.8234 Tb-158 19.3000 0.0000 3.0376 0.4617 -1.2200 3.2269 Tb-157 18.0565 0.9577 3.3696 0.5538 -1.1365 5.5068 Gd-159 19.9000 0.9517 2.6302 0.5300 -1.1252 5.4620 Gd-158 19.3000 1.9093 2.8152 0.5596 -0.4648 6.8458 Gd-157 20.0000 0.9577 3.0516 0.5315 -1.2892 5.6268 Gd-156 19.0000 1.9215 3.2702 0.5513 -0.3880 6.7098 Gd-155 20.5000 0.9639 3.7045 0.5229 -1.4800 5.7609 Gd-154 18.5215 1.9340 3.6018 0.5706 -0.6048 7.0075 -------------------------------------------------------- Table 3. Gamma-ray strength function for Dy-161 -------------------------------------------------------- * E1: ER = 12.33 (MeV) EG = 3.15 (MeV) SIG = 137.34 (mb) ER = 16.01 (MeV) EG = 5.19 (MeV) SIG = 274.69 (mb) ER = 4.42 (MeV) EG = 0.90 (MeV) SIG = 3.10 (mb) ER = 3.10 (MeV) EG = 1.60 (MeV) SIG = 3.00 (mb) * M1: ER = 7.54 (MeV) EG = 4.00 (MeV) SIG = 0.91 (mb) * E2: ER = 11.58 (MeV) EG = 4.18 (MeV) SIG = 3.86 (mb) -------------------------------------------------------- References 1) Mughabghab, S.F.: "Neutron Cross Sections, Vol. 1, Neutron Resonance Parameters and Thermal Cross Sections, Part B", Academic Press (1984). 2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 3) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 10) Kalbach,C.: Phys. Rev. C33, 818 (1986). 11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).