66-Dy-162 JAEA EVAL-Nov09 N.Iwamoto,S.Chiba DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6643 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 The resolved resonance parameters were evaluated by S.Chiba. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,102-107) added MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 5.0 keV The evaluation is based on the work of Mughabghab /1/ A scattering radius of 7.5 fm was used. Unresolved resonance region : 5.0 keV - 200.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /2/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /3/ and CCONE /4/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 1.9385e+02 Elastic 3.5572e-04 n,gamma 1.9385e+02 2.7472e+03 n,alpha 9.5930e-07 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 24 (n,2na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT= 32 (n,nd) cross section Calculated with CCONE code /4/. MT= 51-91 (n,n') cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. MT=103 (n,p) cross section Calculated with CCONE code /4/. MT=104 (n,d) cross section Calculated with CCONE code /4/. MT=105 (n,t) cross section Calculated with CCONE code /4/. MT=106 (n,He3) cross section Calculated with CCONE code /4/. MT=107 (n,a) cross section Calculated with CCONE code /4/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 24 (n,2na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 51-91 (n,n') reaction Calculated with CCONE code /4/. MT=102 Capture reaction Calculated with CCONE code /4/. ***************************************************************** Nuclear Model Calculation with CCONE code /4/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,3,5,15 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./5/ proton omp: Koning,A.J. and Delaroche,J.P./6/ deuteron omp: Lohr,J.M. and Haeberli,W./7/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ alpha omp: Huizenga,J.R. and Igo,G./9/ (+) (+) omp parameters were modified. 2) Two-component exciton model/10/ * Global parametrization of Koning-Duijvestijn/11/ was used. * Gamma emission channel/12/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/13/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/14/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /15/,/16/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Dy-162 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.08066 2 + * 2 0.26566 4 + * 3 0.54852 6 + * 4 0.88816 2 + 5 0.92128 8 + * 6 0.96294 3 + 7 1.06099 4 + 8 1.14823 2 - 9 1.18276 5 + 10 1.21009 3 - 11 1.27577 1 - 12 1.29701 4 - 13 1.32446 6 + 14 1.35793 3 - 15 1.37508 10 + * 16 1.39051 5 - 17 1.40026 0 + 18 1.45347 2 + 19 1.48567 5 - 20 1.49039 7 + 21 1.51843 5 - 22 1.53013 6 - 23 1.53566 4 + 24 1.57091 3 - 25 1.57429 4 + 26 1.57562 6 - 27 1.63442 5 + 28 1.63720 1 - 29 1.63792 7 - 30 1.66627 0 + 31 1.66908 4 - 32 1.67051 8 + 33 1.68335 7 - 34 1.69134 2 - 35 1.72832 2 + 36 1.73900 3 - 37 1.74572 1 + 38 1.75188 6 + 39 1.75482 7 - 40 1.76661 3 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Dy-163 19.9000 0.9399 2.1664 0.5502 -1.2684 5.7265 Dy-162 19.5000 1.8856 2.4639 0.5582 -0.4126 6.7742 Dy-161 20.0000 0.9457 2.7684 0.5468 -1.4246 5.8432 Dy-160 21.1000 1.8974 2.8705 0.5085 -0.2487 6.3915 Tb-162 18.6000 0.0000 1.8944 0.4625 -0.8591 2.8270 Tb-161 18.4519 0.9457 2.4950 0.5607 -1.0970 5.5427 Tb-160 18.9000 0.0000 2.5855 0.5446 -1.9885 4.4661 Tb-159 21.0000 0.9517 2.9024 0.4767 -0.7563 4.8234 Gd-161 19.6000 0.9457 2.2447 0.5241 -0.8691 5.1638 Gd-160 19.1372 1.8974 2.4922 0.5804 -0.6190 7.1078 Gd-159 19.9000 0.9517 2.6302 0.5300 -1.1252 5.4620 Gd-158 19.3000 1.9093 2.8152 0.5596 -0.4648 6.8458 Gd-157 20.0000 0.9577 3.0516 0.5315 -1.2892 5.6268 Gd-156 19.0000 1.9215 3.2702 0.5513 -0.3880 6.7098 -------------------------------------------------------- Table 3. Gamma-ray strength function for Dy-163 -------------------------------------------------------- * E1: ER = 12.23 (MeV) EG = 3.10 (MeV) SIG = 139.28 (mb) ER = 16.02 (MeV) EG = 5.20 (MeV) SIG = 278.55 (mb) ER = 4.42 (MeV) EG = 0.90 (MeV) SIG = 3.10 (mb) ER = 3.10 (MeV) EG = 1.60 (MeV) SIG = 3.00 (mb) * M1: ER = 7.51 (MeV) EG = 4.00 (MeV) SIG = 0.92 (mb) * E2: ER = 11.53 (MeV) EG = 4.15 (MeV) SIG = 3.83 (mb) -------------------------------------------------------- References 1) Mughabghab, S.F.: "Neutron Cross Sections, Vol. 1, Neutron Resonance Parameters and Thermal Cross Sections, Part B", Academic Press (1984). 2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 3) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 10) Kalbach,C.: Phys. Rev. C33, 818 (1986). 11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).