66-Dy-164 JAEA EVAL-Nov09 N.Iwamoto,S.Chiba DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6649 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 The resolved resonance parameters were evaluated by S.Chiba. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,33,102-107) added MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 8.5 keV The evaluation is based on the work of Mughabghab /1/ A scattering radius of 7.5 fm was used. Unresolved resonance region : 8.5 keV - 200.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /2/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /3/ and CCONE /4/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 2.9742e+03 Elastic 3.2296e+02 n,gamma 2.6512e+03 3.4123e+02 n,alpha 2.8341e-07 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 24 (n,2na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT= 32 (n,nd) cross section Calculated with CCONE code /4/. MT= 33 (n,nt) cross section Calculated with CCONE code /4/. MT= 51-91 (n,n') cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. MT=103 (n,p) cross section Calculated with CCONE code /4/. MT=104 (n,d) cross section Calculated with CCONE code /4/. MT=105 (n,t) cross section Calculated with CCONE code /4/. MT=106 (n,He3) cross section Calculated with CCONE code /4/. MT=107 (n,a) cross section Calculated with CCONE code /4/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 24 (n,2na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 33 (n,nt) reaction Calculated with CCONE code /4/. MT= 51-91 (n,n') reaction Calculated with CCONE code /4/. MT=102 Capture reaction Calculated with CCONE code /4/. ***************************************************************** Nuclear Model Calculation with CCONE code /4/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,3,6,15 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./5/ proton omp: Koning,A.J. and Delaroche,J.P./6/ deuteron omp: Lohr,J.M. and Haeberli,W./7/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ alpha omp: Huizenga,J.R. and Igo,G./9/ (+) (+) omp parameters were modified. 2) Two-component exciton model/10/ * Global parametrization of Koning-Duijvestijn/11/ was used. * Gamma emission channel/12/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/13/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/14/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /15/,/16/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Dy-164 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.07339 2 + * 2 0.24223 4 + * 3 0.50132 6 + * 4 0.76182 2 + 5 0.82819 3 + 6 0.84368 8 + * 7 0.91600 4 + 8 0.97689 2 - 9 1.02464 5 + 10 1.03930 3 - 11 1.12277 4 - 12 1.15575 6 + 13 1.16600 5 + 14 1.22514 5 - 15 1.26130 10 + * 16 1.30260 7 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Dy-165 20.2000 0.9342 1.9090 0.5588 -1.3948 5.9238 Dy-164 19.6000 1.8741 2.0177 0.5619 -0.3641 6.7556 Dy-163 19.9000 0.9399 2.1664 0.5502 -1.2684 5.7265 Dy-162 19.5000 1.8856 2.4639 0.5582 -0.4126 6.7742 Tb-164 19.4138 0.0000 1.8983 0.4855 -1.2362 3.4000 Tb-163 18.6492 0.9399 2.1299 0.5457 -0.8637 5.2359 Tb-162 18.6000 0.0000 1.8944 0.4625 -0.8591 2.8270 Tb-161 18.4519 0.9457 2.4950 0.5607 -1.0970 5.5427 Gd-163 20.0270 0.9399 2.0953 0.3054 0.9417 1.9399 Gd-162 19.3418 1.8856 2.3374 0.5664 -0.4417 6.8501 Gd-161 19.6000 0.9457 2.2447 0.5241 -0.8691 5.1638 Gd-160 19.1372 1.8974 2.4922 0.5804 -0.6190 7.1078 Gd-159 19.9000 0.9517 2.6302 0.5300 -1.1252 5.4620 Gd-158 19.3000 1.9093 2.8152 0.5596 -0.4648 6.8458 -------------------------------------------------------- Table 3. Gamma-ray strength function for Dy-165 -------------------------------------------------------- * E1: ER = 12.12 (MeV) EG = 3.05 (MeV) SIG = 141.19 (mb) ER = 16.04 (MeV) EG = 5.21 (MeV) SIG = 282.37 (mb) ER = 4.42 (MeV) EG = 0.90 (MeV) SIG = 3.10 (mb) ER = 3.10 (MeV) EG = 1.60 (MeV) SIG = 3.00 (mb) * M1: ER = 7.48 (MeV) EG = 4.00 (MeV) SIG = 0.93 (mb) * E2: ER = 11.49 (MeV) EG = 4.13 (MeV) SIG = 3.81 (mb) -------------------------------------------------------- References 1) Mughabghab, S.F.: "Neutron Cross Sections, Vol. 1, Neutron Resonance Parameters and Thermal Cross Sections, Part B", Academic Press (1984). 2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 3) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 10) Kalbach,C.: Phys. Rev. C33, 818 (1986). 11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).