69-Tm-169 JAEA EVAL-Jul09 N.Iwamoto DIST-DEC21 20100125 ----JENDL-5 MATERIAL 6925 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-07 The resolved resonance parameters were evaluated by N.Iwamoto. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,33,41,102-105,107) JENDL/AD-2017 adopted (MF8/MT106) added (MF9/MT107) JENDL/AD-2017 adopted (MF10/MT24,32,41,105) JENDL/AD-2017 based MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region : below 1.13 keV Resolved resonance parameters were taken from Mughabghab /1/. If the total spin J of resonance level was not known, it was determined from the spin distribution of the level density randomly. The negative resonance was placed so as to reproduce the cross sections at thermal energy recommended by Mughabghab /1/. Unresolved resonance region : 1.13 keV - 110.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /2/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /3/ and CCONE /4/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 1.1145e+02 Elastic 6.3808e+00 n,gamma 1.0507e+02 1.6240e+03 n,alpha 5.0693e-06 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 24 (n,2na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT= 32 (n,nd) cross section Calculated with CCONE code /4/. MT= 33 (n,nt) cross section Calculated with CCONE code /4/. MT= 41 (n,2np) cross section Calculated with CCONE code /4/. MT= 51-91 (n,n') cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. MT=103 (n,p) cross section Calculated with CCONE code /4/. MT=104 (n,d) cross section Calculated with CCONE code /4/. MT=105 (n,t) cross section Calculated with CCONE code /4/. MT=106 (n,He3) cross section Calculated with CCONE code /4/. MT=107 (n,a) cross section Calculated with CCONE code /4/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 24 (n,2na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 33 (n,nt) reaction Calculated with CCONE code /4/. MT= 41 (n,2np) reaction Calculated with CCONE code /4/. MT= 51-91 (n,n') reaction Calculated with CCONE code /4/. MT=102 Capture reaction Calculated with CCONE code /4/. ***************************************************************** Nuclear Model Calculation with CCONE code /4/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,3,5,8,19 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./5/ (+) proton omp: Koning,A.J. and Delaroche,J.P./6/ deuteron omp: Lohr,J.M. and Haeberli,W./7/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ alpha omp: McFadden,L. and Satchler,G.R./9/ (+) (+) omp parameters were modified. 2) Two-component exciton model/10/ * Global parametrization of Koning-Duijvestijn/11/ was used. * Gamma emission channel/12/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/13/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/14/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /15/,/16/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Tm-169 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 1/2 + * 1 0.00841 3/2 + * 2 0.11819 5/2 + * 3 0.13893 7/2 + * 4 0.31615 7/2 + 5 0.33212 9/2 + * 6 0.34194 1/2 - 7 0.34503 5/2 - 8 0.36767 11/2 + * 9 0.37927 7/2 - 10 0.43012 9/2 - 11 0.43352 9/2 + 12 0.47288 9/2 - 13 0.47497 3/2 - 14 0.57083 3/2 + 15 0.57538 11/2 + 16 0.58820 11/2 - 17 0.60290 13/2 - 18 0.63330 5/2 + 19 0.63700 13/2 + * 20 0.64676 7/2 - 21 0.69120 15/2 + 22 0.71879 7/2 + 23 0.72545 13/2 - 24 0.74125 13/2 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Tm-170 19.4000 0.0000 1.5224 0.5149 -1.4531 3.8141 Tm-169 19.2395 0.9231 2.0106 0.5639 -1.2273 5.7204 Tm-168 19.8160 0.0000 2.0640 0.5004 -1.5183 3.8008 Tm-167 19.0430 0.9286 2.4345 0.5776 -1.4839 6.0332 Er-169 20.3000 0.9231 1.6617 0.5240 -0.8867 5.1976 Er-168 19.9000 1.8516 1.8458 0.5567 -0.3394 6.6845 Er-167 20.6000 0.9286 1.9183 0.5387 -1.2261 5.6418 Er-166 19.7502 1.8628 2.1732 0.5344 -0.0901 6.2974 Ho-168 19.8160 0.0000 1.5469 0.4357 -0.7497 2.6096 Ho-167 19.0430 0.9286 1.8595 0.5488 -0.9339 5.3377 Ho-166 19.1000 0.0000 1.7188 0.5231 -1.5338 3.9232 Ho-165 18.8462 0.9342 2.0651 0.5709 -1.2206 5.7487 Ho-164 19.4138 0.0000 2.2576 0.4706 -1.1596 3.2308 Ho-163 18.6492 0.9399 2.6642 0.5676 -1.2957 5.7740 -------------------------------------------------------- Table 3. Gamma-ray strength function for Tm-170 -------------------------------------------------------- * E1: ER = 12.02 (MeV) EG = 3.00 (MeV) SIG = 148.10 (mb) ER = 15.95 (MeV) EG = 5.15 (MeV) SIG = 296.21 (mb) * M1: ER = 7.40 (MeV) EG = 4.00 (MeV) SIG = 0.82 (mb) * E2: ER = 11.37 (MeV) EG = 4.07 (MeV) SIG = 4.10 (mb) -------------------------------------------------------- References 1) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth Edition: Resonance Parameters and Thermal Cross Sections. Z=1-100", Elsevier Science (2006). 2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 3) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 9) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 10) Kalbach,C.: Phys. Rev. C33, 818 (1986). 11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).