73-Ta-181 EVAL-Nov12 K.Shibata (JAEA) JNST 53, 957 (2016) DIST-DEC21 20180726 ----JENDL-5 MATERIAL 7328 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 14-11 Evaluated with CCONE code by K.Shibata (JAEA) /1/ 18-07 Activation cross sections and MF=3,6/MT=600-849 added. 20-10 Energies of discrete primary photons were corrected. 21-10 Resolved resonance parameters were replaced by N.Iwamoto. 21-11 above 20 MeV, JENDL-4.0/HE merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region: 1.0e-5 eV - 2.4 keV Parameters were taken from Refs./2,3,4/ for positive resonances, and ENDF/B-IV for a negative resonance. These parameters remain unchanged from JENDL-4.0. The latest data obtained by Meaze et al./5/ were not adopted, since the radiation widths at many resonances were extremely large. The parameters of 4.27,10.3,13.8,20.2,22.7,23.9,30.0, 34.2,35.1,35.9,39.1,49.1,63.0,76.8,78.8,82.8,89.5,91.3, 96.9,99.2,105.4,115.0,126.3,136.3,138.2,144.1,148.2, 149.6-eV s-wave resonances were replaced into the results of J-PARC MLF ANNRI/6/. Unresolved resonance region: 2.4 keV - 100 keV The parameters were obtained by fitting to the total and caputure cross sections calculated from CCONE /7/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- LFS 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 2.63476E+01 Elastic 5.87868E+00 n,gamma 2.04689E+01 7.15747E+02 n,alpha 6.82656E-08 5.08963E-08 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /7/. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic cross sctions from total cross sections. Below 2.4 keV, the cross sections should be calculated from resolved resonance parameters. MT= 3 Non-elastic cross section Sum of partial non-elastic cross sections. MT=4,51-91 (n,n') cross section Calculated with CCONE code /7/. MT= 16 (n,2n) cross section Calculated with CCONE code /7/. MT= 17 (n,3n) cross section Calculated with CCONE code /7/. MT= 22 (n,na) cross section Calculated with CCONE code /7/. MT= 28 (n,np) cross section Calculated with CCONE code /7/. MT= 32 (n,nd) cross section Calculated with CCONE code /7/. MT= 41 (n,2np) cross section Calculated with CCONE code /7/. MT=102 Capture cross section Calculated with CCONE code /7/. Below 2.4 keV, the cross sections should be calculated from resolved resonance parameters. MT=103,600-649 (n,p) cross section Calculated with CCONE code /7/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /7/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /7/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /7/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /7/. 1/v cross sections were assumed below 2.4 keV. The thermal (n,a) cross section was obtained by multiplying the thermal capture cross sections by the ratio of the CCONE calculations ( sig_na / sig_capture) at 0.0253 eV. MF= 4 Angular distributions of secondary neutrons MT= 2 Elastic scattering Calculated with CCONE code /7/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /7/. MT= 17 (n,3n) reaction Calculated with CCONE code /7/. MT= 22 (n,na) reaction Calculated with CCONE code /7/. MT= 28 (n,np) reaction Calculated with CCONE code /7/. MT= 32 (n,nd) reaction Calculated with CCONE code /7/. MT= 41 (n,2np) reaction Calculated with CCONE code /7/. MT=51-91 (n,n') reaction Calculated with CCONE code /7/. MT=102 Capture reaction Calculated with CCONE code /7/. MT=600-649 (n,p) reaction Calculated with CCONE code /7/. MT=650-699 (n,d) reaction Calculated with CCONE code /7/. MT=700-749 (n,t) reaction Calculated with CCONE code /7/. MT=750-799 (n,He3) reaction Calculated with CCONE code /7/. MT=800-849 (n,a) reaction Calculated with CCONE code /7/. MF= 8 Information on decay data MT=4 (n,n') MT= 16 (n,2n) MT= 17 (n,3n) MT= 22 (n,na) MT= 28 (n,np) MT= 32 (n,nd) MT= 41 (n,2np) MT=102 Capture MT=103 (n,p) MT=104 (n,d) MT=105 (n,t) MT=106 (n,He3) MT=107 (n,a) MF= 9 Isomeric branching ratios MT= 22 (n,na) reaction Calculated with CCONE code /7/. MT=102 Capture reaction Calculated with CCONE code /7/. Below 60 keV, the isomeric ratios were modified so as to reproduce the the thermal capture cross section of M2 recommended by Mughabghab /8/. MT=107 (n,a) reaction Calculated with CCONE code /7/. MF=10 Nuclide production cross sections MT= 16 (n,2n) reaction Calculated with CCONE code /7/. MT= 28 (n,np) reaction Calculated with CCONE code /7/. MT= 32 (n,nd) reaction Calculated with CCONE code /7/. MT= 41 (n,2np) reaction Calculated with CCONE code /7/. MT=104 (n,d) reaction Calculated with CCONE code /7/. MT=105 (n,t) reaction Calculated with CCONE code /7/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /7/ ------------------------------------------------------------------ * Optical model potentials alpha : E.D.Arthur and P.G.Young/9/ deuteron: J.M.Lohr and W.Haeberli/10/ He-3 : F.D.Becchetti Jr. and G.W.Greenlees/11/ neutron : S. Kunieda et al./12/ proton : A.J.Koning and J.P.Delaroche/13/ triton : F.D.Becchetti Jr. and G.W.Greenlees/11/ * Level scheme of Ta-181 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 7/2 + c 1 0.006240 9/2 - 2 0.136260 9/2 + c 3 0.158550 11/2 - 4 0.301620 11/2 + c 5 0.337540 13/2 - 6 0.482170 5/2 + 7 0.495180 13/2 + c 8 0.542510 15/2 - 9 0.590060 7/2 + 10 0.615190 1/2 + 11 0.618990 3/2 + 12 0.716660 15/2 + 13 0.727310 9/2 + 14 0.772970 17/2 - ----------------------- c: coupled-channel calc. * Level density parameters (Gilbert-Cameron model/14/) Energy dependent parameters of Mengoni-Nakajima/15/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Ta-182 20.154 0.000 1.173 0.492 -1.279 3.574 0.647 Ta-181 21.468 0.892 1.428 0.481 -0.603 4.644 0.773 Ta-180 21.369 0.000 1.388 0.471 -1.354 3.544 0.624 Ta-179 21.271 0.897 1.887 0.482 -0.700 4.735 0.891 Hf-181 21.468 0.892 1.438 0.470 -0.475 4.444 1.117 Hf-180 21.369 1.789 1.588 0.541 -0.532 6.736 1.630 Hf-179 21.271 0.897 1.623 0.501 -0.867 5.030 1.121 Lu-179 21.271 0.897 1.638 0.440 -0.163 3.939 0.735 Lu-178 21.172 0.000 1.338 0.402 -0.633 2.367 0.475 Lu-177 21.074 0.902 1.751 0.488 -0.689 4.762 1.094 --------------------------------------------------------- * Gamma-ray strength functions for Ta-182 E1: generalized lorentzian model(GLO)/16/ ER= 12.30 (MeV) EG= 2.43 (MeV) SIG= 259.00 (mb) ER= 15.23 (MeV) EG= 4.48 (MeV) SIG= 341.00 (mb) ER= 5.50 (MeV) EG= 2.50 (MeV) SIG= 3.00 (mb) M1: standard lorentzian model(SLO) ER= 7.23 (MeV) EG= 4.00 (MeV) SIG= 1.02 (mb) E2: standard lorentzian model(SLO) ER= 11.12 (MeV) EG= 3.93 (MeV) SIG= 4.44 (mb) References 1) K.Shibata, J. Nucl. Sci. Technol., 53, 957 (2016). 2) S.F. Mughabghab and D.I. Gardner, BNL-325, 3rd ed. (1973). 3) R.L. Macklin, Nucl. Sci. Eng., 86, 362 (1984). 4) I. Tsubone et al., J. Nucl. Sci. Technol., 24, 975 (1987). 5) A.K.M. Moinul Haque Meaze, J. Korean Phys. Soc., 48, 827 (2006). 6) S.Endo et al., J. Nucl. Sci. Technol., in press (2022). 7) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007). 8) S.F. Mughabghab, Atlas of Neutron Resonances (2006). 9) E.D.Arthur and P.G.Young, Report LA-8636-MS(ENDF-304) (1980). 10) J.M.Lohr and W.Haeberli, Nucl. Phys. A232,381(1974). 11) F.D.Becchetti Jr. and G.W.Greenlees, Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 12) S. Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007). 13) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003). 14) A. Gilbert and A.G.W. Cameron, Can. J. Phys, 43, 1446 (1965). 15) A. Mengoni and Y. Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994). 16) J. Kopecky and M. Uhl, Phys. Rev. C 41, 1941 (1990).