74-W -186 JAEA EVAL-Nov21 N.Iwamoto DIST-DEC21 20211106 ----JENDL-5 MATERIAL 7443 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 10-02 The resolved resonance parameters were evaluated by N.Iwamoto. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-08 MF3,6/MT600-849 and MF8,9,10 were added by N.Iwamoto. 21-11 JENDL-5b3 revised by N.Iwamoto (MF4/MT2) revised. 21-11 above 20 MeV, JENDL-4.0/HE merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved parameters for MLBW formula were given in the energy below 3.5 keV. Parameters were evaluated in examining both the experimental data/1,2,3/ and the recommended data of BNL/4/. For unknown radiative width, an average value of 60 milli-eV was assumed. Radius was assumed to be 7.64 fm/4/. For JENDL-4.0 the upper limit of the resolved resonance energy was changed due to significant level missing. The negative resonance was placed so as to reproduce the cross sections at thermal energy recommended by Mughabghab /5/. Unresolved resonance region : 3.5 keV - 300 keV The unresolved resonance paramters (URP) were determined by ASREP code /6/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /7/ and CCONE /8/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 3.8174e+01 Elastic 7.4242e-02 n,gamma 3.8100e+01 4.7406e+02 n,alpha 2.6861e-09 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /8/. MT= 16 (n,2n) cross section Calculated with CCONE code /8/. MT= 17 (n,3n) cross section Calculated with CCONE code /8/. MT= 22 (n,na) cross section Calculated with CCONE code /8/. MT= 24 (n,2na) cross section Calculated with CCONE code /8/. MT= 28 (n,np) cross section Calculated with CCONE code /8/. MT= 32 (n,nd) cross section Calculated with CCONE code /8/. MT= 33 (n,nt) cross section Calculated with CCONE code /8/. MT= 51-91 (n,n') cross section Calculated with CCONE code /8/. MT=102 Capture cross section Calculated with CCONE code /8/. MT=103 (n,p) cross section Calculated with CCONE code /8/. MT=104 (n,d) cross section Calculated with CCONE code /8/. MT=105 (n,t) cross section Calculated with CCONE code /8/. MT=106 (n,He3) cross section Calculated with CCONE code /8/. MT=107 (n,a) cross section Calculated with CCONE code /8/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /8/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /8/. MT= 17 (n,3n) reaction Calculated with CCONE code /8/. MT= 22 (n,na) reaction Calculated with CCONE code /8/. MT= 24 (n,2na) reaction Calculated with CCONE code /8/. MT= 28 (n,np) reaction Calculated with CCONE code /8/. MT= 32 (n,nd) reaction Calculated with CCONE code /8/. MT= 33 (n,nt) reaction Calculated with CCONE code /8/. MT= 51-91 (n,n') reaction Calculated with CCONE code /8/. MT=102 Capture reaction Calculated with CCONE code /8/. ***************************************************************** Nuclear Model Calculation with CCONE code /8/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,4 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./9/ (+) proton omp: Koning,A.J. and Delaroche,J.P./10/ deuteron omp: Lohr,J.M. and Haeberli,W./11/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./12/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./12/ alpha omp: Huizenga,J.R. and Igo,G./13/ (+) omp parameters were modified. 2) Two-component exciton model/14/ * Global parametrization of Koning-Duijvestijn/15/ was used. * Gamma emission channel/16/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/17/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/18/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/19/,/20/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of W-186 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.12263 2 + * 2 0.39655 4 + * 3 0.73796 2 + 4 0.80925 6 + * 5 0.86228 3 + 6 0.88359 0 + 7 0.95274 2 - 8 1.00673 4 + 9 1.01497 2 + 10 1.03023 2 + 11 1.04540 3 - 12 1.15000 0 + 13 1.17163 4 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- W-187 23.5700 0.8775 1.1868 0.4614 -0.6754 4.6629 W-186 23.1400 1.7598 1.2307 0.4935 -0.1424 6.0929 W-185 22.7200 0.8823 1.2247 0.4842 -0.8101 4.9225 W-184 22.1100 1.7693 1.2350 0.5106 -0.1439 6.1796 Ta-186 21.6124 0.0000 1.5887 0.4184 -0.8465 2.7000 Ta-185 20.8032 0.8823 1.7050 0.4571 -0.2445 4.0825 Ta-184 21.4138 0.0000 1.3866 0.3893 -0.5346 2.1728 Ta-183 20.6300 0.8871 1.5183 0.4673 -0.2784 4.1815 Hf-185 22.1963 0.8823 2.0291 0.2852 0.8635 1.8823 Hf-184 21.5751 1.7693 2.0510 0.5205 -0.3829 6.4298 Hf-183 22.0008 0.8871 1.6503 0.4912 -0.8609 4.9869 Hf-182 21.3733 1.7790 1.7280 0.5008 0.0219 5.9188 Hf-181 22.0100 0.8920 1.4311 0.4845 -0.7193 4.8126 Hf-180 20.9400 1.7889 1.5810 0.5569 -0.5865 6.8900 -------------------------------------------------------- Table 3. Gamma-ray strength function for W-187 -------------------------------------------------------- K0 = 1.140 E0 = 4.500 (MeV) * E1: ER = 12.59 (MeV) EG = 2.29 (MeV) SIG = 211.00 (mb) ER = 14.88 (MeV) EG = 5.18 (MeV) SIG = 334.00 (mb) ER = 5.30 (MeV) EG = 1.80 (MeV) SIG = 4.00 (mb) * M1: ER = 7.17 (MeV) EG = 4.00 (MeV) SIG = 1.10 (mb) * E2: ER = 11.02 (MeV) EG = 3.87 (MeV) SIG = 4.51 (mb) -------------------------------------------------------- References 1) Camarda H.S. et al.: Phys. Rev. C8, 1813 (1973). 2) Ohkubo M.: JAERI-M 5624 (1974). 3) Macklin R.L. et al.: LA-9200-MS (1982). 4) Mughabghab S.F.:"Neutron Cross Sections", Vol. 1, part B (1984). 5) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth Edition: Resonance Parameters and Thermal Cross Sections. Z=1-100", Elsevier Science (2006). 6) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 7) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 8) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 9) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 10) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 11) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 12) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 13) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 14) Kalbach,C.: Phys. Rev. C33, 818 (1986). 15) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 16) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 17) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 18) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 19) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 20) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).