74-W -188 JAEA EVAL-Aug21 N.Iwamoto DIST-DEC21 20210830 ----JENDL-5 MATERIAL 7449 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 21-08 Evaluated with CCONE code by N.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Scattering radius only AP is assumed to be 7.8 fm. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 1.99717E+01 Elastic 7.69190E+00 n,gamma 1.20048E+01 7.02269E+00 n,alpha 2.48820E-14 1.46787E-14 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /1/. MT= 2 Elastic scattering cross section Calculated with CCONE code /1/. MT=4,51-91 (n,n') cross section Calculated with CCONE code /1/. MT= 5 Total reaction (except fission) cross section Calculated with CCONE code /1/. MT= 16 (n,2n) cross section Calculated with CCONE code /1/. MT= 17 (n,3n) cross section Calculated with CCONE code /1/. MT= 22 (n,na) cross section Calculated with CCONE code /1/. MT= 24 (n,2na) cross section Calculated with CCONE code /1/. MT= 25 (n,3na) cross section Calculated with CCONE code /1/. MT= 28 (n,np) cross section Calculated with CCONE code /1/. MT= 29 (n,n2a) cross section Calculated with CCONE code /1/. MT= 32 (n,nd) cross section Calculated with CCONE code /1/. MT= 33 (n,nt) cross section Calculated with CCONE code /1/. MT= 41 (n,2np) cross section Calculated with CCONE code /1/. MT= 45 (n,npa) cross section Calculated with CCONE code /1/. MT=102 Capture cross section Calculated with CCONE code /1/. The thermal cross section was derived from Mirzadeh et al./2/. Below 126eV the cross section of 1/v shape was adopted. MT=103 (n,p) cross section Calculated with CCONE code /1/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /1/. MT=105 (n,t) cross section Calculated with CCONE code /1/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /1/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /1/. Below 126eV the cross section of 1/v shape was adopted. MT=108 (n,2a) cross section Calculated with CCONE code /1/. MT=111 (n,2p) cross section Calculated with CCONE code /1/. MT=112 (n,pa) cross section Calculated with CCONE code /1/. MT=117 (n,da) cross section Calculated with CCONE code /1/. MT=155 (n,ta) cross section Calculated with CCONE code /1/. MF= 4 Angular distributions of secondary particles MT= 2 Elastic scattering Calculated with CCONE code /1/. MF= 6 Energy-angle distributions of emitted particles MT= 5 Total reaction (except fission) reaction Calculated with CCONE code /1/. MT= 16 (n,2n) reaction Calculated with CCONE code /1/. MT= 17 (n,3n) reaction Calculated with CCONE code /1/. MT= 22 (n,na) reaction Calculated with CCONE code /1/. MT= 24 (n,2na) reaction Calculated with CCONE code /1/. MT= 25 (n,3na) reaction Calculated with CCONE code /1/. MT= 28 (n,np) reaction Calculated with CCONE code /1/. MT= 29 (n,n2a) reaction Calculated with CCONE code /1/. MT= 32 (n,nd) reaction Calculated with CCONE code /1/. MT= 33 (n,nt) reaction Calculated with CCONE code /1/. MT= 41 (n,2np) reaction Calculated with CCONE code /1/. MT= 45 (n,npa) reaction Calculated with CCONE code /1/. MT=51-91 (n,n') reaction Calculated with CCONE code /1/. MT=102 Capture reaction Calculated with CCONE code /1/. MT=108 (n,2a) reaction Calculated with CCONE code /1/. MT=111 (n,2p) reaction Calculated with CCONE code /1/. MT=112 (n,pa) reaction Calculated with CCONE code /1/. MT=117 (n,da) reaction Calculated with CCONE code /1/. MT=155 (n,ta) reaction Calculated with CCONE code /1/. MT=650-699 (n,d) reaction Calculated with CCONE code /1/. MT=750-799 (n,He3) reaction Calculated with CCONE code /1/. MT=800-849 (n,a) reaction Calculated with CCONE code /1/. MF= 8 Information on decay data MT=4 (n,n') reaction Decay chain is given in the decay data file. MT= 5 Total reaction (except fission) reaction Decay chain is given in the decay data file. MT= 16 (n,2n) reaction Decay chain is given in the decay data file. MT= 17 (n,3n) reaction Decay chain is given in the decay data file. MT= 22 (n,na) reaction Decay chain is given in the decay data file. MT= 24 (n,2na) reaction Decay chain is given in the decay data file. MT= 25 (n,3na) reaction Decay chain is given in the decay data file. MT= 28 (n,np) reaction Decay chain is given in the decay data file. MT= 29 (n,n2a) reaction Decay chain is given in the decay data file. MT= 32 (n,nd) reaction Decay chain is given in the decay data file. MT= 33 (n,nt) reaction Decay chain is given in the decay data file. MT= 41 (n,2np) reaction Decay chain is given in the decay data file. MT= 45 (n,npa) reaction Decay chain is given in the decay data file. MT=102 Capture reaction Decay chain is given in the decay data file. MT=103 (n,p) reaction Decay chain is given in the decay data file. MT=104 (n,d) reaction Decay chain is given in the decay data file. MT=105 (n,t) reaction Decay chain is given in the decay data file. MT=106 (n,He3) reaction Decay chain is given in the decay data file. MT=107 (n,a) reaction Decay chain is given in the decay data file. MT=108 (n,2a) reaction Decay chain is given in the decay data file. MT=111 (n,2p) reaction Decay chain is given in the decay data file. MT=112 (n,pa) reaction Decay chain is given in the decay data file. MT=117 (n,da) reaction Decay chain is given in the decay data file. MT=155 (n,ta) reaction Decay chain is given in the decay data file. MF=10 Nuclide production cross sections MT= 25 (n,3na) reaction Calculated with CCONE code /1/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /1/ ------------------------------------------------------------------ * Optical model potentials neutron : S.Kunieda et al./3/ proton : global OMP, A.J.Koning and J.P.Delaroche/4/ deuteron: Y.Han et al./5/ triton : folding OMP, A.J.Koning and J.P.Delaroche/4/ He-3 : Y.Xu et al. /6/ alpha : L.McFadden and G.R.Satchler/7/ * Level scheme of W-188 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 0 + 1 0.143160 2 + 2 0.439490 4 + 3 0.628140 2 + 4 0.780000 0 - 5 0.854130 3 + 6 0.871100 6 + 7 0.886000 0 + 8 0.939230 4 + 9 0.979350 2 - 10 1.070700 3 - ----------------------- * Level density parameters (Gilbert-Cameron model/8/) Energy dependent parameters of Mengoni-Nakajima/9/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- W-189 22.253 0.873 1.315 0.468 -0.576 4.541 0.000 W-188 22.155 1.750 1.225 0.500 -0.067 6.000 1.071 W-187 22.567 0.878 1.188 0.492 -0.919 5.066 1.188 W-186 21.959 1.760 1.232 0.515 -0.217 6.254 1.563 W-185 21.992 0.882 1.227 0.492 -0.804 4.935 1.145 Ta-188 22.155 0.000 1.925 0.462 -1.515 3.676 0.282 Ta-187 22.057 0.878 1.853 0.464 -0.632 4.560 0.000 Ta-186 21.959 0.000 1.590 0.469 -1.485 3.690 0.000 Ta-185 21.861 0.882 1.707 0.335 0.630 2.476 1.153 Ta-184 21.763 0.000 1.389 0.422 -0.893 2.785 0.048 Hf-187 22.057 0.878 2.400 0.458 -0.687 4.560 0.000 Hf-186 21.959 1.760 2.261 0.461 0.206 5.450 0.000 Hf-185 21.861 0.882 2.068 0.465 -0.655 4.580 0.000 Hf-184 21.763 1.769 2.053 0.544 -0.829 6.992 0.107 Hf-183 21.664 0.887 1.654 0.501 -0.962 5.125 0.069 Hf-182 21.566 1.779 1.737 0.389 1.140 4.093 2.214 Hf-181 21.421 0.892 1.440 0.470 -0.475 4.447 1.210 --------------------------------------------------------- * Gamma-ray strength functions for W-189 E1: hybrid model(GH)/10/ ER= 12.32 (MeV) EG= 3.15 (MeV) SIG= 170.48 (mb) ER= 15.08 (MeV) EG= 4.63 (MeV) SIG= 340.97 (mb) M1: standard lorentzian model(SLO) ER= 7.14 (MeV) EG= 4.00 (MeV) SIG= 1.03 (mb) E2: standard lorentzian model(SLO) ER= 10.98 (MeV) EG= 3.84 (MeV) SIG= 4.49 (mb) References 1) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007) 2) S.Mirzadeh et al. Radiochimica Acta, 77, 99 (1997) 3) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007) 4) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003) 5) Y.Han et al., Phys. Rev. C 74,044615(2006) 6) Y.Xu et al., Sci. China, Phys. Mech. & Astron., 54[11], 2005 (2011) 7) L.McFadden and G.R.Satchler, Nucl. Phys. 84, 177 (1966) 8) A. Gilbert and A.G.W. Cameron, Can. J. Phys, 43, 1446 (1965) 9) A. Mengoni and Y. Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994) 10) S. Goriely, Phys. Lett. B436, 10 (1998)