76-Os-184 JAEA EVAL-Jan10 N.Iwamoto DIST-DEC21 20100121 ----JENDL-5 MATERIAL 7625 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 10-01 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-08 MF3,6/MT600-849 and MF8,9,10 were added by N.Iwamoto. MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters No resolved resonance parameters Unresolved resonance region : 10.0 eV - 200 keV The unresolved resonance paramters (URP) were determined by ASREP code /1/ so as to reproduce the total and capture cross sections calculated with optical model code CCOM /2/ and CCONE /3/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 3.0116e+03 Elastic 1.0028e+01 n,gamma 3.0012e+03 1.3679e+03 n,alpha 5.0020e-03 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /3/. MT= 16 (n,2n) cross section Calculated with CCONE code /3/. MT= 17 (n,3n) cross section Calculated with CCONE code /3/. MT= 22 (n,na) cross section Calculated with CCONE code /3/. MT= 24 (n,2na) cross section Calculated with CCONE code /3/. MT= 28 (n,np) cross section Calculated with CCONE code /3/. MT= 32 (n,nd) cross section Calculated with CCONE code /3/. MT= 41 (n,2np) cross section Calculated with CCONE code /3/. MT= 51-91 (n,n') cross section Calculated with CCONE code /3/. MT=102 Capture cross section Calculated with CCONE code /3/. MT=103 (n,p) cross section Calculated with CCONE code /3/. MT=104 (n,d) cross section Calculated with CCONE code /3/. MT=105 (n,t) cross section Calculated with CCONE code /3/. MT=106 (n,He3) cross section Calculated with CCONE code /3/. MT=107 (n,a) cross section Calculated with CCONE code /3/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /3/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /3/. MT= 17 (n,3n) reaction Calculated with CCONE code /3/. MT= 22 (n,na) reaction Calculated with CCONE code /3/. MT= 24 (n,2na) reaction Calculated with CCONE code /3/. MT= 28 (n,np) reaction Calculated with CCONE code /3/. MT= 32 (n,nd) reaction Calculated with CCONE code /3/. MT= 41 (n,2np) reaction Calculated with CCONE code /3/. MT= 51-91 (n,n') reaction Calculated with CCONE code /3/. MT=102 Capture reaction Calculated with CCONE code /3/. ***************************************************************** Nuclear Model Calculation with CCONE code /3/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,3,9 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./4/ (+) proton omp: Koning,A.J. and Delaroche,J.P./5/ deuteron omp: Lohr,J.M. and Haeberli,W./6/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/ alpha omp: Huizenga,J.R. and Igo,G./8/ (+) omp parameters were modified. 2) Two-component exciton model/9/ * Global parametrization of Koning-Duijvestijn/10/ was used. * Gamma emission channel/11/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/12/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/13/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/14/,/15/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Os-184 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.11980 2 + * 2 0.38377 4 + * 3 0.77414 6 + * 4 0.94278 2 + 5 1.04200 0 + 6 1.08102 3 + 7 1.20800 3 - 8 1.22504 4 + 9 1.27486 8 + * 10 1.40670 4 - 11 1.42830 5 + 12 1.44572 2 + 13 1.50063 3 + 14 1.54394 3 - 15 1.61318 6 + 16 1.62072 4 - 17 1.63155 0 + 18 1.63770 0 + 19 1.69798 2 + 20 1.70757 0 + 21 1.71817 5 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Os-185 22.1963 0.8823 1.2316 0.5204 -1.1821 5.5154 Os-184 21.5751 1.7693 1.2558 0.4918 0.2058 5.6759 Os-183 22.0008 0.8871 1.5238 0.5028 -0.9787 5.1834 Os-182 21.3733 1.7790 1.7013 0.4819 0.2627 5.5558 Re-184 21.4138 0.0000 0.9812 0.4428 -0.9368 2.9335 Re-183 20.6085 0.8871 1.1284 0.5140 -0.7059 4.9237 Re-182 21.2150 0.0000 1.4245 0.3791 -0.4414 2.0000 Re-181 20.4137 0.8920 1.7484 0.4998 -0.6498 4.7622 W-183 21.5000 0.8871 1.1150 0.5015 -0.7444 4.9247 W-182 21.6000 1.7790 1.2320 0.4968 0.1520 5.7824 W-181 21.7000 0.8920 1.4211 0.5039 -0.8970 5.1048 W-180 21.8000 1.7889 1.6876 0.4911 0.0704 5.8453 W-179 21.6088 0.8969 1.8693 0.4999 -0.9425 5.1166 W-178 20.9690 1.7989 2.0630 0.4917 0.1523 5.7405 -------------------------------------------------------- Table 3. Gamma-ray strength function for Os-185 -------------------------------------------------------- K0 = 1.700 E0 = 4.500 (MeV) * E1: ER = 12.23 (MeV) EG = 3.10 (MeV) SIG = 167.95 (mb) ER = 15.27 (MeV) EG = 4.74 (MeV) SIG = 335.90 (mb) * M1: ER = 7.20 (MeV) EG = 4.00 (MeV) SIG = 1.27 (mb) * E2: ER = 11.06 (MeV) EG = 3.89 (MeV) SIG = 4.78 (mb) -------------------------------------------------------- References 1) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 2) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003) 3) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 4) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 5) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 6) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 7) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 8) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 9) Kalbach,C.: Phys. Rev. C33, 818 (1986). 10) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 11) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 12) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 13) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 14) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 15) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).