76-Os-186 JAEA EVAL-Jan10 N.Iwamoto DIST-DEC21 20100121 ----JENDL-5 MATERIAL 7631 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 10-01 The resolved resonance parameters were evaluated by N.Iwamoto. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-08 MF3,6/MT600-849 and MF8,9,10 were added by N.Iwamoto. MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region: below 3.4 keV Resolved resonance parameters were taken from Mughabghab /1/. The negative resonance was placed so as to reproduce the cross sections at thermal energy recommended by Mughabghab /1/. Unresolved resonance region : 3.4 keV - 200 keV The unresolved resonance paramters (URP) were determined by ASREP code /2/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /3/ and CCONE /4/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 1.0009e+02 Elastic 2.0056e+01 n,gamma 8.0037e+01 2.4239e+02 n,alpha 4.4977e-04 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 24 (n,2na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT= 32 (n,nd) cross section Calculated with CCONE code /4/. MT= 33 (n,nt) cross section Calculated with CCONE code /4/. MT= 41 (n,2np) cross section Calculated with CCONE code /4/. MT= 51-91 (n,n') cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. MT=103 (n,p) cross section Calculated with CCONE code /4/. MT=104 (n,d) cross section Calculated with CCONE code /4/. MT=105 (n,t) cross section Calculated with CCONE code /4/. MT=106 (n,He3) cross section Calculated with CCONE code /4/. MT=107 (n,a) cross section Calculated with CCONE code /4/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 24 (n,2na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 33 (n,nt) reaction Calculated with CCONE code /4/. MT= 41 (n,2np) reaction Calculated with CCONE code /4/. MT= 51-91 (n,n') reaction Calculated with CCONE code /4/. MT=102 Capture reaction Calculated with CCONE code /4/. ***************************************************************** Nuclear Model Calculation with CCONE code /4/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,4,11 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./5/ (+) proton omp: Koning,A.J. and Delaroche,J.P./6/ (+) deuteron omp: Lohr,J.M. and Haeberli,W./7/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ alpha omp: Huizenga,J.R. and Igo,G./9/ (+) omp parameters were modified. 2) Two-component exciton model/10/ * Global parametrization of Koning-Duijvestijn/11/ was used. * Gamma emission channel/12/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/13/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/14/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/15/,/16/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Os-186 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.13716 2 + * 2 0.43409 4 + * 3 0.76748 2 + 4 0.86894 6 + * 5 0.91047 3 + 6 1.06100 0 + 7 1.07048 4 + 8 1.20844 2 + 9 1.27561 5 + 10 1.35193 4 + 11 1.42094 8 + * 12 1.45290 3 + 13 1.45600 0 + 14 1.46092 4 + 15 1.48007 3 - 16 1.49129 6 + 17 1.55983 5 + 18 1.57100 1 - 19 1.62320 5 + 20 1.62854 5 - 21 1.64081 3 + 22 1.65358 2 + 23 1.70460 4 + 24 1.75080 7 + 25 1.75450 2 + 26 1.77190 6 - 27 1.77465 7 - 28 1.77580 0 + 29 1.81262 6 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Os-187 22.9000 0.8775 0.9894 0.5173 -1.2331 5.5812 Os-186 21.7766 1.7598 1.0161 0.5003 0.1144 5.8222 Os-185 22.1963 0.8823 1.2316 0.5204 -1.1821 5.5154 Os-184 21.5751 1.7693 1.2558 0.4918 0.2058 5.6759 Re-186 21.4000 0.0000 0.9320 0.4744 -1.2480 3.4655 Re-185 20.8032 0.8823 1.1055 0.4981 -0.5577 4.6703 Re-184 21.4138 0.0000 0.9812 0.4428 -0.9368 2.9335 Re-183 20.6085 0.8871 1.1284 0.5140 -0.7059 4.9237 W-185 22.7200 0.8823 1.2247 0.4842 -0.8101 4.9225 W-184 22.1100 1.7693 1.2350 0.5106 -0.1439 6.1796 W-183 21.5000 0.8871 1.1150 0.5015 -0.7444 4.9247 W-182 21.6000 1.7790 1.2320 0.4968 0.1520 5.7824 W-181 21.7000 0.8920 1.4211 0.5039 -0.8970 5.1048 W-180 21.8000 1.7889 1.6876 0.4911 0.0704 5.8453 -------------------------------------------------------- Table 3. Gamma-ray strength function for Os-187 -------------------------------------------------------- K0 = 1.700 E0 = 4.500 (MeV) * E1: ER = 13.03 (MeV) EG = 3.13 (MeV) SIG = 308.00 (mb) ER = 15.26 (MeV) EG = 3.38 (MeV) SIG = 302.00 (mb) ER = 5.50 (MeV) EG = 1.10 (MeV) SIG = 2.50 (mb) ER = 1.70 (MeV) EG = 0.50 (MeV) SIG = 0.04 (mb) * M1: ER = 7.17 (MeV) EG = 4.00 (MeV) SIG = 1.12 (mb) * E2: ER = 11.02 (MeV) EG = 3.87 (MeV) SIG = 4.76 (mb) -------------------------------------------------------- References 1) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth Edition: Resonance Parameters and Thermal Cross Sections. Z=1-100", Elsevier Science (2006). 2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 3) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 10) Kalbach,C.: Phys. Rev. C33, 818 (1986). 11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).