76-Os-187 JAEA EVAL-Jan10 N.Iwamoto DIST-DEC21 20100121 ----JENDL-5 MATERIAL 7634 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 10-01 The resolved resonance parameters were evaluated by N.Iwamoto. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-08 MF3,6/MT600-849 and MF8,9,10 were added by N.Iwamoto. MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region: below 1.0 keV Resolved resonance parameters were taken from Mughabghab /1/. The negative resonance was placed so as to reproduce the cross sections at thermal energy recommended by Mughabghab /1/. Unresolved resonance region : 1.0 keV - 100 keV The unresolved resonance paramters (URP) were determined by ASREP code /2/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /3/ and CCONE /4/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 3.2753e+02 Elastic 7.8211e+00 n,gamma 3.1971e+02 5.4210e+02 n,alpha 5.0551e-05 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 24 (n,2na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT= 32 (n,nd) cross section Calculated with CCONE code /4/. MT= 33 (n,nt) cross section Calculated with CCONE code /4/. MT= 41 (n,2np) cross section Calculated with CCONE code /4/. MT= 51-91 (n,n') cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. MT=103 (n,p) cross section Calculated with CCONE code /4/. MT=104 (n,d) cross section Calculated with CCONE code /4/. MT=105 (n,t) cross section Calculated with CCONE code /4/. MT=106 (n,He3) cross section Calculated with CCONE code /4/. MT=107 (n,a) cross section Calculated with CCONE code /4/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 24 (n,2na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 33 (n,nt) reaction Calculated with CCONE code /4/. MT= 41 (n,2np) reaction Calculated with CCONE code /4/. MT= 51-91 (n,n') reaction Calculated with CCONE code /4/. MT=102 Capture reaction Calculated with CCONE code /4/. ***************************************************************** Nuclear Model Calculation with CCONE code /4/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,3,4,9 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./5/ (+) proton omp: Koning,A.J. and Delaroche,J.P./6/ deuteron omp: Lohr,J.M. and Haeberli,W./7/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ alpha omp: Huizenga,J.R. and Igo,G./9/ (+) omp parameters were modified. 2) Two-component exciton model/10/ * Global parametrization of Koning-Duijvestijn/11/ was used. * Gamma emission channel/12/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/13/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/14/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/15/,/16/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Os-187 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 1/2 - * 1 0.00975 3/2 - * 2 0.07433 3/2 - 3 0.07504 5/2 - * 4 0.10055 7/2 - * 5 0.11700 5/2 + 6 0.18740 5/2 - 7 0.19060 7/2 - 8 0.25717 11/2 + 9 0.26330 9/2 - * 10 0.33326 7/2 - 11 0.34150 9/2 - 12 0.35000 7/2 - 13 0.41900 13/2 + 14 0.44200 3/2 + 15 0.44504 7/2 - 16 0.45950 11/2 - 17 0.46400 3/2 - 18 0.50145 3/2 - 19 0.50822 9/2 - 20 0.51160 11/2 - 21 0.53656 3/2 - 22 0.55690 9/2 + 23 0.58631 5/2 - 24 0.59645 3/2 - 25 0.61100 3/2 - 26 0.61800 15/2 + 27 0.64187 5/2 - 28 0.66413 3/2 - 29 0.67000 11/2 + 30 0.68400 11/2 - 31 0.68450 13/2 - 32 0.71123 5/2 - 33 0.72574 3/2 - 34 0.72710 11/2 + 35 0.74500 3/2 - 36 0.75700 7/2 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Os-188 23.1000 1.7504 0.7049 0.4799 0.1757 5.6719 Os-187 22.9000 0.8775 0.9894 0.5173 -1.2331 5.5812 Os-186 21.7766 1.7598 1.0161 0.5003 0.1144 5.8222 Os-185 22.1963 0.8823 1.2316 0.5204 -1.1821 5.5154 Re-187 20.9976 0.8775 1.0287 0.5196 -0.8390 5.1039 Re-186 21.4000 0.0000 0.9320 0.4744 -1.2480 3.4655 Re-185 20.8032 0.8823 1.1055 0.4981 -0.5577 4.6703 Re-184 21.4138 0.0000 0.9812 0.4428 -0.9368 2.9335 Re-183 20.6085 0.8871 1.1284 0.5140 -0.7059 4.9237 W-186 23.1400 1.7598 1.2307 0.4935 -0.1424 6.0929 W-185 22.7200 0.8823 1.2247 0.4842 -0.8101 4.9225 W-184 22.1100 1.7693 1.2350 0.5106 -0.1439 6.1796 W-183 21.5000 0.8871 1.1150 0.5015 -0.7444 4.9247 W-182 21.6000 1.7790 1.2320 0.4968 0.1520 5.7824 W-181 21.7000 0.8920 1.4211 0.5039 -0.8970 5.1048 -------------------------------------------------------- Table 3. Gamma-ray strength function for Os-188 -------------------------------------------------------- K0 = 1.700 E0 = 4.500 (MeV) * E1: ER = 12.81 (MeV) EG = 2.76 (MeV) SIG = 260.00 (mb) ER = 14.88 (MeV) EG = 4.19 (MeV) SIG = 390.00 (mb) ER = 5.50 (MeV) EG = 1.10 (MeV) SIG = 6.50 (mb) ER = 2.10 (MeV) EG = 0.50 (MeV) SIG = 0.06 (mb) * M1: ER = 7.16 (MeV) EG = 4.00 (MeV) SIG = 1.43 (mb) * E2: ER = 11.00 (MeV) EG = 3.85 (MeV) SIG = 4.75 (mb) -------------------------------------------------------- References 1) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth Edition: Resonance Parameters and Thermal Cross Sections. Z=1-100", Elsevier Science (2006). 2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 3) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 10) Kalbach,C.: Phys. Rev. C33, 818 (1986). 11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).