76-Os-188 JAEA EVAL-Jan10 N.Iwamoto DIST-DEC21 20100121 ----JENDL-5 MATERIAL 7637 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 10-01 The resolved resonance parameters were evaluated by N.Iwamoto. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-08 MF3,6/MT600-849 and MF8,9,10 were added by N.Iwamoto. MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region: below 5.0 keV Resolved resonance parameters were taken from Mughabghab /1/. The negative resonance was placed so as to reproduce the cross sections at thermal energy recommended by Mughabghab /1/. Unresolved resonance region : 5.0 keV - 200 keV The unresolved resonance paramters (URP) were determined by ASREP code /2/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /3/ and CCONE /4/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 1.3230e+01 Elastic 7.7271e+00 n,gamma 5.5029e+00 1.5400e+02 n,alpha 1.2351e-05 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 24 (n,2na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT= 32 (n,nd) cross section Calculated with CCONE code /4/. MT= 33 (n,nt) cross section Calculated with CCONE code /4/. MT= 51-91 (n,n') cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. MT=103 (n,p) cross section Calculated with CCONE code /4/. MT=104 (n,d) cross section Calculated with CCONE code /4/. MT=105 (n,t) cross section Calculated with CCONE code /4/. MT=106 (n,He3) cross section Calculated with CCONE code /4/. MT=107 (n,a) cross section Calculated with CCONE code /4/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 24 (n,2na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 33 (n,nt) reaction Calculated with CCONE code /4/. MT= 51-91 (n,n') reaction Calculated with CCONE code /4/. MT=102 Capture reaction Calculated with CCONE code /4/. ***************************************************************** Nuclear Model Calculation with CCONE code /4/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,5,17 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./5/ (+) proton omp: Koning,A.J. and Delaroche,J.P./6/ deuteron omp: Lohr,J.M. and Haeberli,W./7/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ alpha omp: Huizenga,J.R. and Igo,G./9/ (+) omp parameters were modified. 2) Two-component exciton model/10/ * Global parametrization of Koning-Duijvestijn/11/ was used. * Gamma emission channel/12/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/13/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/14/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/15/,/16/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Os-188 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.15502 2 + * 2 0.47794 4 + * 3 0.63301 2 + 4 0.78998 3 + 5 0.94031 6 + * 6 0.96565 4 + 7 1.08636 0 + 8 1.18086 5 + 9 1.27909 4 + 10 1.30482 2 + 11 1.41378 3 - 12 1.42484 6 + 13 1.44350 1 - 14 1.45753 2 + 15 1.46251 2 - 16 1.47804 0 + 17 1.51470 8 + * 18 1.51610 5 + 19 1.56670 4 + 20 1.57700 2 + 21 1.62048 2 + 22 1.66866 5 - 23 1.68529 3 + 24 1.68550 7 + 25 1.70427 0 + 26 1.72942 2 + 27 1.74650 2 - 28 1.76540 0 + 29 1.77100 7 - 30 1.80761 2 + 31 1.82494 0 + 32 1.84292 0 + 33 1.85500 0 + 34 1.87790 0 + 35 1.89300 0 + 36 1.93690 0 + 37 1.94102 0 + 38 1.94860 0 + 39 1.95709 0 + 40 1.96498 2 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Os-189 23.6000 0.8729 0.7207 0.5092 -1.1969 5.5241 Os-188 23.1000 1.7504 0.7049 0.4799 0.1757 5.6719 Os-187 22.9000 0.8775 0.9894 0.5173 -1.2331 5.5812 Os-186 21.7766 1.7598 1.0161 0.5003 0.1144 5.8222 Re-188 22.0000 0.0000 0.8388 0.4802 -1.4013 3.6931 Re-187 20.9976 0.8775 1.0287 0.5196 -0.8390 5.1039 Re-186 21.4000 0.0000 0.9320 0.4744 -1.2480 3.4655 Re-185 20.8032 0.8823 1.1055 0.4981 -0.5577 4.6703 W-187 23.5700 0.8775 1.1868 0.4614 -0.6754 4.6629 W-186 23.1400 1.7598 1.2307 0.4935 -0.1424 6.0929 W-185 22.7200 0.8823 1.2247 0.4842 -0.8101 4.9225 W-184 22.1100 1.7693 1.2350 0.5106 -0.1439 6.1796 W-183 21.5000 0.8871 1.1150 0.5015 -0.7444 4.9247 W-182 21.6000 1.7790 1.2320 0.4968 0.1520 5.7824 -------------------------------------------------------- Table 3. Gamma-ray strength function for Os-189 -------------------------------------------------------- K0 = 1.700 E0 = 4.500 (MeV) * E1: ER = 12.68 (MeV) EG = 2.71 (MeV) SIG = 268.00 (mb) ER = 14.68 (MeV) EG = 3.62 (MeV) SIG = 395.00 (mb) ER = 5.50 (MeV) EG = 1.10 (MeV) SIG = 2.50 (mb) ER = 1.70 (MeV) EG = 0.50 (MeV) SIG = 0.04 (mb) * M1: ER = 7.14 (MeV) EG = 4.00 (MeV) SIG = 1.22 (mb) * E2: ER = 10.98 (MeV) EG = 3.84 (MeV) SIG = 4.74 (mb) -------------------------------------------------------- References 1) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth Edition: Resonance Parameters and Thermal Cross Sections. Z=1-100", Elsevier Science (2006). 2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 3) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 10) Kalbach,C.: Phys. Rev. C33, 818 (1986). 11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).