76-Os-192 JAEA EVAL-Jan10 N.Iwamoto DIST-DEC21 20100121 ----JENDL-5 MATERIAL 7649 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 10-01 The resolved resonance parameters were evaluated by N.Iwamoto. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-08 MF3,6/MT600-849 and MF8,9,10 were added by N.Iwamoto. MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region: below 240 eV Resolved resonance parameters were taken from Mughabghab /1/. The negative resonance was placed so as to reproduce the cross sections at thermal energy recommended by Mughabghab /1/. Unresolved resonance region : 240 eV - 200 keV The unresolved resonance paramters (URP) were determined by ASREP code /2/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /3/ and CCONE /4/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 1.8060e+01 Elastic 1.4942e+01 n,gamma 3.1174e+00 1.0259e+01 n,alpha 1.2102e-15 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 24 (n,2na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT= 32 (n,nd) cross section Calculated with CCONE code /4/. MT= 51-91 (n,n') cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. MT=103 (n,p) cross section Calculated with CCONE code /4/. MT=104 (n,d) cross section Calculated with CCONE code /4/. MT=105 (n,t) cross section Calculated with CCONE code /4/. MT=106 (n,He3) cross section Calculated with CCONE code /4/. MT=107 (n,a) cross section Calculated with CCONE code /4/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 24 (n,2na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 51-91 (n,n') reaction Calculated with CCONE code /4/. MT=102 Capture reaction Calculated with CCONE code /4/. ***************************************************************** Nuclear Model Calculation with CCONE code /4/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,3,8,23 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./5/ (+) proton omp: Koning,A.J. and Delaroche,J.P./6/ deuteron omp: Lohr,J.M. and Haeberli,W./7/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ alpha omp: Huizenga,J.R. and Igo,G./9/ (+) omp parameters were modified. 2) Two-component exciton model/10/ * Global parametrization of Koning-Duijvestijn/11/ was used. * Gamma emission channel/12/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/13/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/14/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/15/,/16/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Os-192 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.20579 2 + * 2 0.48906 2 + 3 0.58028 4 + * 4 0.69037 3 + 5 0.90959 4 + 6 0.95654 0 + 7 1.06954 4 + 8 1.08923 6 + * 9 1.12751 2 + 10 1.14352 5 + 11 1.20629 0 + 12 1.34115 3 - 13 1.36202 5 + 14 1.40986 2 + 15 1.45031 2 + 16 1.45660 4 + 17 1.46534 6 + 18 1.56060 4 - 19 1.59174 3 + 20 1.61287 2 + 21 1.64510 6 + 22 1.66509 2 + 23 1.70839 8 + * 24 1.71291 7 + 25 1.73379 2 + 26 1.78034 3 + 27 1.80771 2 + 28 1.82651 1 - 29 1.83740 2 + 30 1.85797 3 + 31 1.86787 2 + 32 1.86870 2 - 33 1.87879 2 + 34 1.89493 3 + 35 1.90268 0 + 36 1.92168 0 + 37 1.92400 0 + 38 1.93690 2 + 39 1.94000 4 + 40 1.94080 0 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Os-193 24.8000 0.8638 -0.6182 0.4975 -0.8915 5.2162 Os-192 22.3797 1.7321 -0.3439 0.5319 -0.0502 6.2330 Os-191 24.1000 0.8683 0.1619 0.5157 -1.2338 5.6493 Os-190 23.1000 1.7411 0.3025 0.5036 -0.0238 6.0343 Re-192 22.2067 0.0000 0.2223 0.3842 -0.4006 2.0000 Re-191 21.3859 0.8683 0.5919 0.5198 -0.8133 5.0956 Re-190 22.0088 0.0000 0.6386 0.3818 -0.4260 2.0158 Re-189 21.1918 0.8729 0.9313 0.5028 -0.6533 4.8062 W-191 22.7810 0.8683 1.0433 0.2918 0.8686 1.8683 W-190 22.1789 1.7411 1.1218 0.2965 1.7487 2.7411 W-189 22.5864 0.8729 1.4546 0.4721 -0.6930 4.7000 W-188 21.9779 1.7504 1.2256 0.5151 -0.1841 6.2107 W-187 23.5700 0.8775 1.1868 0.4614 -0.6754 4.6629 W-186 23.1400 1.7598 1.2307 0.4935 -0.1424 6.0929 -------------------------------------------------------- Table 3. Gamma-ray strength function for Os-193 -------------------------------------------------------- K0 = 1.700 E0 = 4.500 (MeV) * E1: ER = 12.68 (MeV) EG = 2.49 (MeV) SIG = 206.00 (mb) ER = 14.35 (MeV) EG = 4.41 (MeV) SIG = 389.00 (mb) ER = 5.50 (MeV) EG = 1.10 (MeV) SIG = 2.50 (mb) ER = 1.60 (MeV) EG = 0.30 (MeV) SIG = 0.03 (mb) * M1: ER = 7.09 (MeV) EG = 4.00 (MeV) SIG = 1.37 (mb) * E2: ER = 10.90 (MeV) EG = 3.79 (MeV) SIG = 4.70 (mb) -------------------------------------------------------- References 1) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth Edition: Resonance Parameters and Thermal Cross Sections. Z=1-100", Elsevier Science (2006). 2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 3) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 10) Kalbach,C.: Phys. Rev. C33, 818 (1986). 11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).