78-Pt-195 EVAL-Jun15 K.Shibata (JAEA) JNST 54,147 (2017) DIST-DEC21 20180719 ----JENDL-5 MATERIAL 7840 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 2015-06 Evaluated with CCONE code by K.Shibata (JAEA) /1/ 2018-07 Activation cross sections and MF=3,6/MT=600-849 added. 2020-10 Energies of discrete primary photons were corrected. MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region: 1.0e-5 eV - 900 eV Parameters were taken from the compilation of Mughabghab /2/. The neutron width at -20.58 eV was adjusted so as to reproduce the thermal capture cross section measured by Massarczyk et al. /3/ Unresolved resonance region: 900 eV - 100 keV The parameters were obtained by fitting to the total and caputure cross sections calculated from CCONE /4/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- LFS 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 4.1597E+01 Elastic 1.0821E+01 n,gamma 3.0776E+01 3.7426E+02 n,alpha 1.3604E-06 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /4/. Below 900 eV, the cross section is the sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic cross sctions from total cross sections. Below 900 eV, the cross sections should be calculated from resolved resonance parameters. MT= 3 Non-elastic cross section Sum of partial non-elastic cross sections. MT=4,51-91 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT= 32 (n,nd) cross section Calculated with CCONE code /4/. MT= 41 (n,2np) cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. Below 900 eV, the cross sections should be calculated from resolved resonance parameters. MT=103,600-649 (n,p) cross section Calculated with CCONE code /4/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /4/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /4/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /4/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /4/. 1/v cross sections were assumed below 900 eV. The thermal (n,a) cross section was obtained by multiplying the thermal capture cross sections by the ratio of the CCONE calculations ( sig_na / sig_capture) at 0.0253 eV. MF= 4 Angular distributions of secondary neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 41 (n,2np) reaction Calculated with CCONE code /4/. MT=51-91 (n,n') reaction Calculated with CCONE code /4/. MT=102 Capture reaction Calculated with CCONE code /4/. MT=600-649 (n,p) reaction Calculated with CCONE code /4/. MT=650-699 (n,d) reaction Calculated with CCONE code /4/. MT=700-749 (n,t) reaction Calculated with CCONE code /4/. MT=750-799 (n,He3) reaction Calculated with CCONE code /4/. MT=800-849 (n,a) reaction Calculated with CCONE code /4/. MF= 8 Information on decay data MT=4 (n,n') MT= 16 (n,2n) MT= 17 (n,3n) MT= 22 (n,na) MT= 28 (n,np) MT= 32 (n,nd) MT= 41 (n,2np) MT=102 Capture MT=103 (n,p) MT=104 (n,d) MT=105 (n,t) MT=106 (n,He3) MT=107 (n,a) MF= 9 Isomeric branching ratios MT= 22 (n,na) reaction Calculated with CCONE code /4/. MF=10 Nuclide production cross sections MT=4 (n,n') reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 41 (n,2np) reaction Calculated with CCONE code /4/. MT=103 (n,p) reaction Calculated with CCONE code /4/. MT=104 (n,d) reaction Calculated with CCONE code /4/. MT=105 (n,t) reaction Calculated with CCONE code /4/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /4/ ------------------------------------------------------------------ * Optical model potentials alpha : V.Avrigeanu et al./5/ deuteron: J.M.Lohr and W.Haeberli/6/ He-3 : F.D.Becchetti Jr. and G.W.Greenlees/7/ neutron : S. Kunieda et al./8/ proton : A.J.Koning and J.P.Delaroche/9/ triton : F.D.Becchetti Jr. and G.W.Greenlees/7/ * Level scheme of Pt-195 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 1/2 - c 1 0.098880 3/2 - c 2 0.129780 5/2 - c 3 0.199530 3/2 - 4 0.211400 3/2 - 5 0.222230 1/2 - 6 0.239270 5/2 - 7 0.259300 13/2 + 8 0.389160 5/2 - 9 0.419700 3/2 - 10 0.432000 17/2 + 11 0.432200 9/2 + 12 0.449660 7/2 - c 13 0.455200 5/2 - 14 0.508080 7/2 - 15 0.524850 3/2 - 16 0.539000 9/2 - 17 0.544200 5/2 - 18 0.547270 11/2 + 19 0.562810 9/2 - 20 0.590900 3/2 - 21 0.612720 7/2 - 22 0.630140 1/2 - 23 0.632100 3/2 - 24 0.664200 5/2 - 25 0.667100 9/2 - 26 0.678000 7/2 - 27 0.695300 7/2 - 28 0.739550 3/2 - 29 0.765800 7/2 - 30 0.793000 11/2 + 31 0.793001 3/2 - 32 0.814520 9/2 - 33 0.821850 5/2 + 34 0.875000 5/2 - ----------------------- c: coupled-channel calc. * Level density parameters (Gilbert-Cameron model/10/) Energy dependent parameters of Mengoni-Nakajima/11/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Pt-196 22.936 1.714 -2.151 0.583 -0.239 7.037 1.992 Pt-195 22.839 0.859 -1.456 0.585 -1.366 6.400 0.875 Pt-194 22.741 1.723 -1.159 0.545 -0.056 6.437 1.992 Pt-193 22.644 0.864 -0.352 0.557 -1.327 6.020 0.692 Ir-195 22.839 0.859 -1.258 0.508 -0.450 4.793 1.107 Ir-194 22.741 0.000 -1.012 0.524 -1.561 4.307 0.524 Ir-193 22.644 0.864 -0.506 0.536 -0.987 5.523 1.038 Os-193 22.644 0.864 -0.622 0.539 -0.998 5.571 0.456 Os-192 22.546 1.732 -0.347 0.516 0.102 6.001 1.895 Os-191 22.448 0.868 0.159 0.560 -1.500 6.171 0.748 --------------------------------------------------------- * Gamma-ray strength functions for Pt-196 E1: generalized lorentzian model(GLO)/12/ ER= 13.72 (MeV) EG= 4.99 (MeV) SIG= 512.00 (mb) ER= 5.50 (MeV) EG= 2.40 (MeV) SIG= 2.50 (mb) ER= 1.40 (MeV) EG= 1.60 (MeV) SIG= 0.50 (mb) M1: standard lorentzian model(SLO) ER= 7.06 (MeV) EG= 4.00 (MeV) SIG= 1.56 (mb) E2: standard lorentzian model(SLO) ER= 10.85 (MeV) EG= 3.76 (MeV) SIG= 4.92 (mb) References 1) K.Shibata, J. Nucl. Sci. Technol., 54, 147 (2017). 2) S.F. Mughabghab, Atlas of Neutron Resonances, Elsevier (2006). 3) R. Massarczyk et al., Phys. Rev. C 87, 044306 (2013). 4) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007). 5) V.Avrigeanu et al., Report OUNP-94-02 (1994) , Phys. Rev. C49,2136 (1994). 6) J.M.Lohr and W.Haeberli, Nucl. Phys. A232,381(1974). 7) F.D.Becchetti Jr. and G.W.Greenlees, Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 8) S. Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007). 9) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003). 10) A. Gilbert and A.G.W. Cameron, Can. J. Phys, 43, 1446 (1965). 11) A. Mengoni and Y. Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994). 12) J. Kopecky and M. Uhl, Phys. Rev. C 41, 1941 (1990).