78-Pt-197 EVAL-Jun15 K.Shibata (JAEA) JNST 54,147 (2017) DIST-DEC21 20180719 ----JENDL-5 MATERIAL 7846 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 2015-06 Evaluated with CCONE code by K.Shibata (JAEA) /1/ 2018-07 Activation cross sections and MF=3,6/MT=600-849 added. 2020-10 Energies of discrete primary photons were corrected. MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters No resolved resonance is given. Unresolved resonance region: 50 eV - 53 keV The parameters were obtained by fitting to the total and caputure cross sections calculated from CCONE /2/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- LFS 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 9.4710E+00 Elastic 8.9062E+00 n,gamma 5.6493E-01 3.9242E+01 n,alpha 4.7301E-10 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /2/. Below 53 eV, the cross sections were calculated from partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic cross sections from total cross sections. Below 50 eV, the cross section is given by 4.0*pi*R**2, where R was estimated in the unresolved resonance region. MT= 3 Non-elastic cross section Sum of partial non-elastic cross sections. MT=4,51-91 (n,n') cross section Calculated with CCONE code /2/. MT= 16 (n,2n) cross section Calculated with CCONE code /2/. MT= 17 (n,3n) cross section Calculated with CCONE code /2/. MT= 22 (n,na) cross section Calculated with CCONE code /2/. MT= 28 (n,np) cross section Calculated with CCONE code /2/. MT= 32 (n,nd) cross section Calculated with CCONE code /2/. MT= 41 (n,2np) cross section Calculated with CCONE code /2/. MT=102 Capture cross section Calculated with CCONE code /2/. 1/v cross sections were assumed below 50 eV. The thermal cross section was normalized to a value of 0.56468 b, which was derived from a simplified formula/3/. MT=103,600-649 (n,p) cross section Calculated with CCONE code /2/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /2/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /2/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /2/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /2/. 1/v cross sections were assumed below 50 eV. The thermal (n,a) cross section was obtained by multiplying the thermal capture cross sections by the ratio of the CCONE calculations ( sig_na / sig_capture) at 0.0253 eV. MF= 4 Angular distributions of secondary neutrons MT= 2 Elastic scattering Calculated with CCONE code /2/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /2/. MT= 17 (n,3n) reaction Calculated with CCONE code /2/. MT= 22 (n,na) reaction Calculated with CCONE code /2/. MT= 28 (n,np) reaction Calculated with CCONE code /2/. MT= 32 (n,nd) reaction Calculated with CCONE code /2/. MT= 41 (n,2np) reaction Calculated with CCONE code /2/. MT=51-91 (n,n') reaction Calculated with CCONE code /2/. MT=102 Capture reaction Calculated with CCONE code /2/. MT=600-649 (n,p) reaction Calculated with CCONE code /2/. MT=650-699 (n,d) reaction Calculated with CCONE code /2/. MT=700-749 (n,t) reaction Calculated with CCONE code /2/. MT=750-799 (n,He3) reaction Calculated with CCONE code /2/. MT=800-849 (n,a) reaction Calculated with CCONE code /2/. MF= 8 Information on decay data MT=4 (n,n') MT= 16 (n,2n) MT= 17 (n,3n) MT= 22 (n,na) MT= 28 (n,np) MT= 32 (n,nd) MT= 41 (n,2np) MT=102 Capture MT=103 (n,p) MT=104 (n,d) MT=105 (n,t) MT=106 (n,He3) MT=107 (n,a) MF=10 Nuclide production cross sections MT=4 (n,n') reaction Calculated with CCONE code /2/. MT= 17 (n,3n) reaction Calculated with CCONE code /2/. MT= 28 (n,np) reaction Calculated with CCONE code /2/. MT= 32 (n,nd) reaction Calculated with CCONE code /2/. MT= 41 (n,2np) reaction Calculated with CCONE code /2/. MT=103 (n,p) reaction Calculated with CCONE code /2/. MT=104 (n,d) reaction Calculated with CCONE code /2/. MT=105 (n,t) reaction Calculated with CCONE code /2/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /2/ ------------------------------------------------------------------ * Optical model potentials alpha : V.Avrigeanu et al./4/ deuteron: J.M.Lohr and W.Haeberli/5/ He-3 : F.D.Becchetti Jr. and G.W.Greenlees/6/ neutron : S. Kunieda et al./7/ proton : A.J.Koning and J.P.Delaroche/8/ triton : F.D.Becchetti Jr. and G.W.Greenlees/6/ * Level scheme of Pt-197 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 1/2 - c 1 0.053090 5/2 - 2 0.071600 3/2 - c 3 0.098600 3/2 - 4 0.130980 1/2 - 5 0.269110 3/2 - 6 0.273000 5/2 - c 7 0.299330 5/2 - 8 0.371000 9/2 + 9 0.399590 13/2 + 10 0.425700 9/2 - 11 0.456880 5/2 - 12 0.483000 7/2 - c 13 0.502430 3/2 - 14 0.520000 7/2 + 15 0.529000 7/2 - 16 0.595310 1/2 - 17 0.612000 13/2 + 18 0.708370 3/2 - 19 0.713000 5/2 - 20 0.747820 1/2 - 21 0.767000 17/2 + 22 0.797000 3/2 + 23 0.810300 3/2 - 24 0.825000 3/2 - 25 0.854000 7/2 - 26 0.859000 5/2 - 27 0.894800 3/2 - 28 0.955900 1/2 + 29 0.965000 5/2 - ----------------------- c: coupled-channel calc. * Level density parameters (Gilbert-Cameron model/9/) Energy dependent parameters of Mengoni-Nakajima/10/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Pt-198 23.131 1.706 -3.134 0.603 -0.154 7.247 1.944 Pt-197 23.033 0.855 -2.496 0.591 -1.093 6.292 0.965 Pt-196 22.936 1.714 -2.151 0.583 -0.239 7.037 1.992 Pt-195 22.839 0.859 -1.456 0.585 -1.366 6.400 0.875 Ir-197 23.033 0.855 -2.037 0.534 -0.541 5.142 0.654 Ir-196 22.936 0.000 -1.816 0.421 -0.373 2.287 0.522 Ir-195 22.839 0.859 -1.258 0.508 -0.450 4.793 1.107 Os-195 22.839 0.859 -1.132 0.435 0.242 3.509 0.439 Os-194 22.741 1.723 -0.995 0.553 -0.215 6.651 0.696 Os-193 22.644 0.864 -0.622 0.539 -0.998 5.571 0.456 --------------------------------------------------------- * Gamma-ray strength functions for Pt-198 E1: generalized lorentzian model(GLO)/11/ ER= 13.72 (MeV) EG= 4.99 (MeV) SIG= 512.00 (mb) ER= 5.50 (MeV) EG= 2.40 (MeV) SIG= 2.50 (mb) ER= 1.40 (MeV) EG= 1.60 (MeV) SIG= 0.50 (mb) M1: standard lorentzian model(SLO) ER= 7.03 (MeV) EG= 4.00 (MeV) SIG= 1.54 (mb) E2: standard lorentzian model(SLO) ER= 10.81 (MeV) EG= 3.73 (MeV) SIG= 4.90 (mb) References 1) K.Shibata, J. Nucl. Sci. Technol., 54, 147 (2017). 2) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007). 3) K.Shibata, J. Nucl. Sci. Technol., 51, 425 (2014). 4) V.Avrigeanu et al., Report OUNP-94-02 (1994) , Phys. Rev. C49,2136 (1994). 5) J.M.Lohr and W.Haeberli, Nucl. Phys. A232,381(1974). 6) F.D.Becchetti Jr. and G.W.Greenlees, Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 7) S. Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007). 8) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003). 9) A. Gilbert and A.G.W. Cameron, Can. J. Phys, 43, 1446 (1965). 10) A. Mengoni and Y. Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994). 11) J. Kopecky and M. Uhl, Phys. Rev. C 41, 1941 (1990).