78-Pt-202 JAEA EVAL-Sep21 N.Iwamoto DIST-DEC21 20210920 ----JENDL-5 MATERIAL 7861 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 21-09 Evaluated with CCONE code by N.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Scattering radius only AP is assumed to be 8.02 fm. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 8.10091E+00 Elastic 8.09726E+00 n,gamma 2.94093E-03 1.54879E-02 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /1/. MT= 2 Elastic scattering cross section Calculated with CCONE code /1/. MT= 4,51-91 (n,n') cross section Calculated with CCONE code /1/. MT= 5 Total reaction (except fission) cross section Calculated with CCONE code /1/. MT= 16 (n,2n) cross section Calculated with CCONE code /1/. MT= 17 (n,3n) cross section Calculated with CCONE code /1/. MT= 22 (n,na) cross section Calculated with CCONE code /1/. MT= 28 (n,np) cross section Calculated with CCONE code /1/. MT=102 Capture cross section Calculated with CCONE code /1/. The thermal cross section was derived from Shibata/2/. Below 7.95 keV the 1/v cross section was assumed. MT=103,600-649 (n,p) cross section Calculated with CCONE code /1/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /1/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /1/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /1/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /1/. MF= 4 Angular distributions of secondary particles MT= 2 Elastic scattering Calculated with CCONE code /1/. MF= 6 Energy-angle distributions of emitted particles MT= 5 Total reaction (except fission) reaction Calculated with CCONE code /1/. MT= 16 (n,2n) reaction Calculated with CCONE code /1/. MT= 17 (n,3n) reaction Calculated with CCONE code /1/. MT= 22 (n,na) reaction Calculated with CCONE code /1/. MT= 28 (n,np) reaction Calculated with CCONE code /1/. MT= 51- 91 (n,n') reaction Calculated with CCONE code /1/. MT=102 Capture reaction Calculated with CCONE code /1/. MT=600-649 (n,p) reaction Calculated with CCONE code /1/. MT=650-699 (n,d) reaction Calculated with CCONE code /1/. MT=700-749 (n,t) reaction Calculated with CCONE code /1/. MT=750-799 (n,He3) reaction Calculated with CCONE code /1/. MT=800-849 (n,a) reaction Calculated with CCONE code /1/. MF= 8 Information on decay data MT= 4 (n,n') reaction Decay chain is given in the decay data file. MT= 5 Total reaction (except fission) reaction Decay chain is given in the decay data file. MT= 16 (n,2n) reaction Decay chain is given in the decay data file. MT= 17 (n,3n) reaction Decay chain is given in the decay data file. MT= 22 (n,na) reaction Decay chain is given in the decay data file. MT= 28 (n,np) reaction Decay chain is given in the decay data file. MT=102 Capture reaction Decay chain is given in the decay data file. MT=103 (n,p) reaction Decay chain is given in the decay data file. MT=104 (n,d) reaction Decay chain is given in the decay data file. MT=105 (n,t) reaction Decay chain is given in the decay data file. MT=106 (n,He3) reaction Decay chain is given in the decay data file. MT=107 (n,a) reaction Decay chain is given in the decay data file. ------------------------------------------------------------------ nuclear model calculation with CCONE code /1/ ------------------------------------------------------------------ * Optical model potentials neutron : S.Kunieda et al./3/ proton : global OMP, A.J.Koning and J.P.Delaroche/4/ deuteron: Y.Han et al./5/ triton : folding OMP, A.J.Koning and J.P.Delaroche/4/ He-3 : Y.Xu et al./6/ alpha : M.Avrigeanu and V.Avrigeanu/7/ * Level scheme of Pt-202 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 0 + 1 0.534900 2 + ----------------------- * Level density parameters (Gilbert-Cameron model/8/) Energy dependent parameters of Mengoni-Nakajima/9/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Pt-203 23.616 0.842 -5.526 0.551 0.408 4.419 0.000 Pt-202 23.519 1.689 -5.152 0.641 0.170 7.639 0.535 Pt-201 23.422 0.846 -4.451 0.558 -0.026 4.954 0.374 Pt-200 23.325 1.697 -4.151 0.605 0.206 6.993 2.253 Pt-199 26.977 0.851 -3.485 0.391 0.598 2.904 1.923 Ir-202 23.519 0.000 -4.402 0.531 -0.653 3.582 0.000 Ir-201 23.422 0.846 -3.848 0.523 0.097 4.435 0.000 Ir-200 23.325 0.000 -3.579 0.520 -0.793 3.595 0.000 Ir-199 23.228 0.851 -2.971 0.579 -0.800 5.919 0.130 Os-201 23.422 0.846 -3.555 0.518 0.048 4.435 0.000 Os-200 23.325 1.697 -3.180 0.513 0.839 5.292 0.000 Os-199 23.228 0.851 -2.665 0.507 -0.087 4.452 0.000 Os-198 23.131 1.706 -2.379 0.555 0.151 6.383 0.465 Os-197 23.033 0.855 -1.919 0.498 -0.190 4.469 0.000 Os-196 22.936 1.714 -1.533 0.562 -0.196 6.748 0.300 --------------------------------------------------------- * Gamma-ray strength functions for Pt-203 E1: hybrid model(GH)/10/ ER= 13.80 (MeV) EG= 3.91 (MeV) SIG= 563.06 (mb) M1: standard lorentzian model(SLO) ER= 6.98 (MeV) EG= 4.00 (MeV) SIG= 1.07 (mb) E2: standard lorentzian model(SLO) ER= 10.72 (MeV) EG= 3.67 (MeV) SIG= 4.86 (mb) References 1) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007) 2) K.Shibata, J. Nucl. Sci. Technol., 51, 425 (2014) 3) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007) 4) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003) 5) Y.Han et al., Phys. Rev. C 74,044615(2006) 6) Y.Xu et al., Sci. China, Phys. Mech. & Astron., 54[11], 2005 (2011) 7) M.Avrigeanu and V.Avrigeanu, Phys. Rev. C82, 014606 (2010) 8) A.Gilbert and A.G.W.Cameron, Can. J. Phys, 43, 1446 (1965) 9) A.Mengoni and Y.Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994) 10) S.Goriely, Phys. Lett. B436, 10 (1998)