79-Au-197 JAEA EVAL-Feb10 N.Iwamoto DIST-DEC21 20130813 ----JENDL-5 MATERIAL 7925 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 10-02 The resolved resonance parameters were evaluated by N.Iwamoto. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 13-08 The primary gamma data in MF6/MT102 were included in continuum spectra. The maximum energies of continuum spectrum in MF6/MT16,22,28,32,33,91,102 were revised. 21-12 JENDL-5rc1 revised by N.Iwamoto (MF2/MT151) replaced 21-12 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,33,41,102-105,107) JENDL/AD-2017 adopted (MF8/MT106) added (MF9/MT22,103,107) JENDL/AD-2017 adopted (MF10/MT4,16,17,24,32,41,105) JENDL/AD-2017 based 21-12 above 20 MeV, JENDL-4.0/HE merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region : below 2.3 keV Taken from JEFF-3.3. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 1.0657e+02 Elastic 7.9220e+00 n,gamma 9.8649e+01 1.5711e+03 n,alpha 7.4569e-09 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 24 (n,2na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT= 32 (n,nd) cross section Calculated with CCONE code /4/. MT= 33 (n,nt) cross section Calculated with CCONE code /4/. MT= 41 (n,2np) cross section Calculated with CCONE code /4/. MT= 51-91 (n,n') cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. MT=103 (n,p) cross section Calculated with CCONE code /4/. MT=104 (n,d) cross section Calculated with CCONE code /4/. MT=105 (n,t) cross section Calculated with CCONE code /4/. MT=106 (n,He3) cross section Calculated with CCONE code /4/. MT=107 (n,a) cross section Calculated with CCONE code /4/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 24 (n,2na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 33 (n,nt) reaction Calculated with CCONE code /4/. MT= 41 (n,2np) reaction Calculated with CCONE code /4/. MT= 51-91 (n,n') reaction Calculated with CCONE code /4/. MT=102 Capture reaction Calculated with CCONE code /4/. ***************************************************************** Nuclear Model Calculation with CCONE code /4/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,3,6 (see Table 1) * optical model potential neutron omp: Koning,A.J. and Delaroche,J.P./5/ proton omp: Koning,A.J. and Delaroche,J.P./6/ deuteron omp: Lohr,J.M. and Haeberli,W./7/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ alpha omp: Huizenga,J.R. and Igo,G./9/ 2) Two-component exciton model/10/ * Global parametrization of Koning-Duijvestijn/11/ was used. * Gamma emission channel/12/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/13/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/14/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /15/,/16/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Au-197 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 3/2 + * 1 0.07735 1/2 + 2 0.26879 3/2 + 3 0.27899 5/2 + * 4 0.40915 11/2 - 5 0.50250 5/2 + 6 0.54750 7/2 + * 7 0.58300 1/2 + 8 0.73670 7/2 + 9 0.85550 9/2 + 10 0.88200 5/2 + 11 0.88811 1/2 + 12 0.93600 5/2 + 13 0.94800 5/2 - 14 1.04510 5/2 + 15 1.12000 11/2 + 16 1.15050 5/2 + 17 1.21730 3/2 + 18 1.22000 11/2 - 19 1.23100 11/2 + 20 1.24200 1/2 + 21 1.26300 7/2 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Au-198 23.5000 0.0000 -3.4225 0.5829 -1.6170 4.9907 Au-197 22.0000 0.8550 -2.6591 0.5684 -0.5329 5.2839 Au-196 23.9000 0.0000 -2.0588 0.5154 -1.3667 4.0713 Au-195 21.7732 0.8593 -1.4759 0.5524 -0.6845 5.2681 Pt-197 23.5000 0.8550 -2.4961 0.5878 -1.1873 6.3005 Pt-196 23.9000 1.7143 -2.1512 0.5435 0.0374 6.3674 Pt-195 22.4000 0.8593 -1.4563 0.5983 -1.4448 6.5066 Pt-194 22.5803 1.7231 -1.1591 0.5393 0.0580 6.1996 Ir-196 22.6017 0.0000 -1.8165 0.3966 -0.2033 1.7963 Ir-195 21.7732 0.8593 -1.2540 0.5660 -0.9225 5.6240 Ir-194 23.4000 0.0000 -1.0076 0.5222 -1.6745 4.3969 Ir-193 23.3000 0.8638 -0.5016 0.5194 -0.9094 5.3195 Ir-192 23.8000 0.0000 -0.0310 0.4621 -1.2968 3.5533 Ir-191 21.3859 0.8683 0.2942 0.5392 -0.9709 5.4012 -------------------------------------------------------- Table 3. Gamma-ray strength function for Au-198 -------------------------------------------------------- * E1: ER = 13.73 (MeV) EG = 4.76 (MeV) SIG = 502.00 (mb) ER = 5.50 (MeV) EG = 1.50 (MeV) SIG = 5.50 (mb) ER = 1.70 (MeV) EG = 0.50 (MeV) SIG = 0.04 (mb) * M1: ER = 7.03 (MeV) EG = 4.00 (MeV) SIG = 1.47 (mb) * E2: ER = 10.81 (MeV) EG = 3.73 (MeV) SIG = 5.03 (mb) -------------------------------------------------------- References 1) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth Edition: Resonance Parameters and Thermal Cross Sections. Z=1-100", Elsevier Science (2006). 2) Desjardins,J.S. et al.: Phys. Rev., 120, 2214 (1960). 3) Alves,R.N. et al.: Nucl. Phys., A131, 450 (1969). 4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 5) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 10) Kalbach,C.: Phys. Rev. C33, 818 (1986). 11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).