80-Hg-197 EVAL-Mar15 K.Shibata (JAEA) JNST 53, 1595 (2016) DIST-DEC21 20180711 ----JENDL-5 MATERIAL 8028 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 2015-03 Evaluated with CCONE code by K.Shibata (JAEA) /1/ 2018-07 Activation cross sections and MF=3,6/MT=600-849 added. 2020-10 Energies of discrete primary photons were corrected. 21-08 QI of MT781 was slightly shifted to avoid duplication with MT780 by S. Nakayama. MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters No resolved resonance is given. Unresolved resonance region: 15 eV - 100 keV The parameters were obtained by fitting to the total and caputure cross sections calculated from CCONE /2/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- LFS 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 1.1135E+01 Elastic 8.8259E+00 n,gamma 2.3097E+00 2.0610E+02 n,p 1.0929E-15 n,alpha 2.5384E-06 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /2/. Below 15 eV, the cross sections were calculated from partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic cross sections from total cross sections. Below 3 eV, the cross section is given by 4.0*pi*R**2, where R was estimated in the unresolved resonance region. MT= 3 Non-elastic cross section Sum of partial non-elastic cross sections. MT=4,51-91 (n,n') cross section Calculated with CCONE code /2/. MT= 16 (n,2n) cross section Calculated with CCONE code /2/. MT= 17 (n,3n) cross section Calculated with CCONE code /2/. MT= 22 (n,na) cross section Calculated with CCONE code /2/. MT= 28 (n,np) cross section Calculated with CCONE code /2/. MT= 32 (n,nd) cross section Calculated with CCONE code /2/. MT= 41 (n,2np) cross section Calculated with CCONE code /2/. MT=102 Capture cross section Calculated with CCONE code /2/. 1/v cross sections were assumed below 15 eV. The thermal cross section was normalized to a value of 2.3087 b, which was derived from a simplified formula/3/. MT=103,600-649 (n,p) cross section Calculated with CCONE code /2/. 1/v cross sections were assumed below 15 eV. The thermal (n,p) cross section was obtained by multiplying the thermal capture cross sections by the ratio of the CCONE calculations ( sig_np / sig_capture) at 0.0253 eV. MT=104,650-699 (n,d) cross section Calculated with CCONE code /2/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /2/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /2/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /2/. 1/v cross sections were assumed below 15 eV. The thermal (n,a) cross section was obtained by multiplying the thermal capture cross sections by the ratio of the CCONE calculations ( sig_na / sig_capture) at 0.0253 eV. MF= 4 Angular distributions of secondary neutrons MT= 2 Elastic scattering Calculated with CCONE code /2/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /2/. MT= 17 (n,3n) reaction Calculated with CCONE code /2/. MT= 22 (n,na) reaction Calculated with CCONE code /2/. MT= 28 (n,np) reaction Calculated with CCONE code /2/. MT= 32 (n,nd) reaction Calculated with CCONE code /2/. MT= 41 (n,2np) reaction Calculated with CCONE code /2/. MT=51-91 (n,n') reaction Calculated with CCONE code /2/. MT=102 Capture reaction Calculated with CCONE code /2/. MT=600-649 (n,p) reaction Calculated with CCONE code /2/. MT=650-699 (n,d) reaction Calculated with CCONE code /2/. MT=700-749 (n,t) reaction Calculated with CCONE code /2/. MT=750-799 (n,He3) reaction Calculated with CCONE code /2/. MT=800-849 (n,a) reaction Calculated with CCONE code /2/. MF= 8 Information on decay data MT=4 (n,n') MT= 16 (n,2n) MT= 17 (n,3n) MT= 22 (n,na) MT= 28 (n,np) MT= 32 (n,nd) MT= 41 (n,2np) MT=102 Capture MT=103 (n,p) MT=104 (n,d) MT=105 (n,t) MT=106 (n,He3) MT=107 (n,a) MF= 9 Isomeric branching ratios MT= 22 (n,na) reaction Calculated with CCONE code /2/. MT=103 (n,p) reaction Calculated with CCONE code /2/. MF=10 Nuclide production cross sections MT=4 (n,n') reaction Calculated with CCONE code /2/. MT= 17 (n,3n) reaction Calculated with CCONE code /2/. MT= 28 (n,np) reaction Calculated with CCONE code /2/. MT= 32 (n,nd) reaction Calculated with CCONE code /2/. MT= 41 (n,2np) reaction Calculated with CCONE code /2/. MT=104 (n,d) reaction Calculated with CCONE code /2/. MT=105 (n,t) reaction Calculated with CCONE code /2/. MT=106 (n,He3) reaction Calculated with CCONE code /2/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /2/ ------------------------------------------------------------------ * Optical model potentials alpha : V.Avrigeanu et al./4/ deuteron: J.M.Lohr and W.Haeberli/5/ He-3 : F.D.Becchetti Jr. and G.W.Greenlees/6/ neutron : S. Kunieda et al./7/ proton : A.J.Koning and J.P.Delaroche/8/ triton : F.D.Becchetti Jr. and G.W.Greenlees/6/ * Level scheme of Hg-197 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 1/2 - c 1 0.133960 5/2 - 2 0.152140 3/2 - c 3 0.250000 11/2 - 4 0.298930 13/2 + 5 0.307770 5/2 - c 6 0.308500 3/2 - 7 0.477720 11/2 + 8 0.509000 5/2 + d 9 0.557770 5/2 - 10 0.578000 3/2 - 11 0.585380 3/2 - 12 0.652700 17/2 + 13 0.675000 5/2 - 14 0.676750 3/2 - 15 0.715360 9/2 - 16 0.792040 3/2 - 17 0.829070 11/2 + 18 0.892530 3/2 - 19 0.903600 7/2 - ----------------------- c: coupled-channel calc. d: DWBA calc. * Level density parameters (Gilbert-Cameron model/9/) Energy dependent parameters of Mengoni-Nakajima/10/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Hg-198 23.131 1.706 -3.418 0.606 -0.077 7.236 2.110 Hg-197 23.033 0.855 -2.645 0.581 -0.901 6.006 0.904 Hg-196 22.936 1.714 -2.164 0.531 0.405 5.890 2.098 Hg-195 22.839 0.859 -1.303 0.517 -0.540 4.960 1.005 Au-197 23.033 0.855 -2.659 0.538 -0.378 5.039 1.231 Au-196 22.936 0.000 -2.059 0.591 -2.105 5.550 0.502 Au-195 22.839 0.859 -1.475 0.492 -0.211 4.422 1.560 Pt-195 22.839 0.859 -1.456 0.585 -1.366 6.400 0.875 Pt-194 22.741 1.723 -1.159 0.545 -0.056 6.437 1.992 Pt-193 22.644 0.864 -0.352 0.557 -1.327 6.020 0.692 --------------------------------------------------------- * Gamma-ray strength functions for Hg-198 E1: modified lorentzian model(MLO1)/11/ ER= 13.88 (MeV) EG= 3.95 (MeV) SIG= 552.80 (mb) M1: standard lorentzian model(SLO) ER= 7.03 (MeV) EG= 4.00 (MeV) SIG= 1.74 (mb) E2: standard lorentzian model(SLO) ER= 10.81 (MeV) EG= 3.73 (MeV) SIG= 5.15 (mb) References 1) K.Shibata, J. Nucl. Sci. Technol., 53, 1595 (2016). 2) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007). 3) K.Shibata, J. Nucl. Sci. Technol., 51, 425 (2014). 4) V.Avrigeanu et al., Report OUNP-94-02 (1994) , Phys. Rev. C49,2136 (1994). 5) J.M.Lohr and W.Haeberli, Nucl. Phys. A232,381(1974). 6) F.D.Becchetti Jr. and G.W.Greenlees, Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 7) S. Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007). 8) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003). 9) A. Gilbert and A.G.W. Cameron, Can. J. Phys, 43, 1446 (1965). 10) A. Mengoni and Y. Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994). 11) V.A. Plujko et al., J. Nucl. Sci. Technol.(supp. 2), 811 (2002).