80-Hg-203 EVAL-Mar15 K.Shibata (JAEA) JNST 53, 1595 (2016) DIST-DEC21 20180713 ----JENDL-5 MATERIAL 8046 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 2015-03 Evaluated with CCONE code by K.Shibata (JAEA) /1/ 2018-07 Activation cross sections and MF=3,6/MT=600-849 added. 2020-10 Energies of discrete primary photons were corrected. MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters No resolved resonance is given. Unresolved resonance region: 400 eV - 100 keV The parameters were obtained by fitting to the total and caputure cross sections calculated from CCONE /2/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- LFS 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 1.2559E+01 Elastic 1.2473E+01 n,gamma 9.7309E-02 3.2380E+00 n,alpha 4.4709E-13 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic cross sections from the total cross sections calculated with the optical model. Below 400 eV, the cross section is given by 4.0*pi*R**2, where R was estimated in the unresolved resonance region. MT= 3 Non-elastic cross sections. Sum of partial non-elastic cross sections. MT=4,51-91 (n,n') cross section Calculated with CCONE code /2/. MT= 16 (n,2n) cross section Calculated with CCONE code /2/. MT= 17 (n,3n) cross section Calculated with CCONE code /2/. MT= 22 (n,na) cross section Calculated with CCONE code /2/. MT= 28 (n,np) cross section Calculated with CCONE code /2/. MT= 32 (n,nd) cross section Calculated with CCONE code /2/. MT= 41 (n,2np) cross section Calculated with CCONE code /2/. MT=102 Capture cross section Calculated with CCONE code /2/. 1/v cross sections were assumed below 400 eV. The thermal cross section was normalized to a value of 9.7267e-2 b, which was derived from a simplified formula/3/. MT=103,600-649 (n,p) cross section Calculated with CCONE code /2/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /2/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /2/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /2/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /2/. 1/v cross sections were assumed below 400 eV. The thermal (n,a) cross section was obtained by multiplying the thermal capture cross sections by the ratio of the CCONE calculations ( sig_na / sig_capture) at 0.0253 eV. MF= 4 Angular distributions of secondary neutrons MT= 2 Elastic scattering Calculated with CCONE code /2/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /2/. MT= 17 (n,3n) reaction Calculated with CCONE code /2/. MT= 22 (n,na) reaction Calculated with CCONE code /2/. MT= 28 (n,np) reaction Calculated with CCONE code /2/. MT= 32 (n,nd) reaction Calculated with CCONE code /2/. MT= 41 (n,2np) reaction Calculated with CCONE code /2/. MT=51-91 (n,n') reaction Calculated with CCONE code /2/. MT=102 Capture reaction Calculated with CCONE code /2/. MT=600-649 (n,p) reaction Calculated with CCONE code /2/. MT=650-699 (n,d) reaction Calculated with CCONE code /2/. MT=700-749 (n,t) reaction Calculated with CCONE code /2/. MT=750-799 (n,He3) reaction Calculated with CCONE code /2/. MT=800-849 (n,a) reaction Calculated with CCONE code /2/. MF= 8 Information on decay data MT=4 (n,n') MT= 16 (n,2n) MT= 17 (n,3n) MT= 22 (n,na) MT= 28 (n,np) MT= 32 (n,nd) MT= 41 (n,2np) MT=102 Capture MT=103 (n,p) MT=104 (n,d) MT=105 (n,t) MT=106 (n,He3) MT=107 (n,a) MF=10 Nuclide production cross sections MT=4 (n,n') reaction Calculated with CCONE code /2/. MT= 22 (n,na) reaction Calculated with CCONE code /2/. MT=103 (n,p) reaction Calculated with CCONE code /2/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /2/ ------------------------------------------------------------------ * Optical model potentials alpha : V.Avrigeanu et al./4/ deuteron: J.M.Lohr and W.Haeberli/5/ He-3 : F.D.Becchetti Jr. and G.W.Greenlees/6/ neutron : S.Kunieda et al./7/ proton : A.J.Koning and J.P.Delaroche/8/ triton : F.D.Becchetti Jr. and G.W.Greenlees/6/ * Level scheme of Hg-203 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 5/2 - 1 0.007490 1/2 - d 2 0.050600 3/2 - d 3 0.225100 3/2 - 4 0.368800 5/2 - d 5 0.548760 5/2 - 6 0.591520 9/2 - d 7 0.748000 5/2 - 8 0.755520 3/2 + 9 0.766000 3/2 - 10 0.933140 13/2 + 11 1.025000 11/2 + 12 1.043000 3/2 - ----------------------- d: DWBA calc. * Level density parameters (Gilbert-Cameron model/9/) Energy dependent parameters of Mengoni-Nakajima/10/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Hg-204 23.713 1.680 -7.232 0.725 0.191 9.685 2.675 Hg-203 23.616 0.842 -6.529 0.712 -0.871 8.546 1.043 Hg-202 23.519 1.689 -5.927 0.734 -0.714 10.399 1.989 Hg-201 23.422 0.846 -5.263 0.685 -1.173 8.028 0.732 Au-203 23.616 0.842 -6.166 0.644 -0.215 6.466 1.087 Au-202 23.519 0.000 -5.862 0.688 -1.757 7.108 0.166 Au-201 23.422 0.846 -4.994 0.619 -0.457 6.218 0.810 Pt-201 23.422 0.846 -4.451 0.435 0.900 2.726 1.456 Pt-200 23.325 1.697 -4.153 0.611 0.132 7.147 2.258 Pt-199 23.228 0.851 -3.486 0.652 -1.577 7.628 0.474 --------------------------------------------------------- * Gamma-ray strength functions for Hg-204 E1: modified lorentzian model(MLO1)/11/ ER= 13.78 (MeV) EG= 3.90 (MeV) SIG= 571.30 (mb) M1: standard lorentzian model(SLO) ER= 6.96 (MeV) EG= 4.00 (MeV) SIG= 1.78 (mb) E2: standard lorentzian model(SLO) ER= 10.70 (MeV) EG= 3.66 (MeV) SIG= 5.10 (mb) References 1) K.Shibata, J. Nucl. Sci. Technol., 53, 1595 (2016). 2) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007). 3) K. Shibata, J. Nucl. Sci. Technol., 51, 425 (2014). 4) V.Avrigeanu et al., Report OUNP-94-02 (1994) , Phys. Rev. C49,2136 (1994). 5) J.M.Lohr and W.Haeberli, Nucl. Phys. A232,381(1974). 6) F.D.Becchetti Jr. and G.W.Greenlees, Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 7) S. Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007). 8) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003). 9) A. Gilbert and A.G.W. Cameron, Can. J. Phys, 43, 1446 (1965). 10) A. Mengoni and Y. Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994). 11) V.A. Plujko et al., J. Nucl. Sci. Technol.(supp. 2), 811 (2002).