82-Pb-204 JAEA EVAL-MAR10 O.Iwamoto, N.Iwamoto DIST-DEC21 20150816 ----JENDL-5 MATERIAL 8225 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 10-03 Resonace parameters were evaluated by N. Iwamoto. Cross sections and spectra were evaluated and compiled by O. Iwamoto. 13-02 JENDL-4.0u1 Covariance data (MF33/1,2,4,16,17,51-91,102,MF34/2) were added. 21-11 revised by O.Iwamoto (MF8/MT16,17,22,28,102,103,107) JENDL/AD-2017 adopted (MF8/MT4) added 21-11 above 20 MeV, JENDL-4.0/HE merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved resonance parameters for Reich-Moore formula. Resonance ranges: 1.0e-5 eV to 75 keV Parameters were evaluated from the data of Mughabghab /1/ and Domingo-Pardo et al. /2/. Effective scattering radius of 9.5 fm was selected. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 1.29371E+01 Elastic 1.22339E+01 n,gamma 7.03163E-01 2.38541E+00 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Based on experimental data/3/ and CCONE calculation. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic cross sections from total cross sections. MT= 4,51-91 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. MT=103 (n,p) cross section Calculated with CCONE code /4/. MT=107 (n,a) cross section The (n,a) cross section below 75 keV was calculated from resonance parameters, by assuming a mean alpha width of 7.0e-8 eV for s-wave resonances and 1.3e-7 eV for p- and d-wave resonances. The cross section was averaged in suitable energy intervals. Above 75 keV, the cross section was connected smoothly to the CCONE calculation. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Neutron spectra calculated with CCONE code/4/. MT= 17 (n,3n) reaction Neutron spectra calculated with CCONE code/4/. MT= 22 (n,na) reaction Neutron spectra calculated with CCONE code/4/. MT= 28 (n,np) reaction Neutron spectra calculated with CCONE code/4/. MT= 51-91 (n,n') reaction Neutron angular distributions and spectra calculated with CCONE code/4/. MT= 102 Capture cross section Gamma-ray spectra calculated with CCONE code/4/. MF=33 Covariances of neutron cross sections Covariance data were basically evaluated with CCONE code/4/ and KALMAN code/5/. Evaluated data with the other methods are described bellow. MT=1 Total cross section 1.0e-5 eV to 75 keV(RRR): given by a sum of the covariance data of the elastic scattering and the neutron capture cross sections. 75 keV to 2 MeV: obtained based on the average cross section of the experimental data/3/. 2 MeV to 20 MeV: obtained by the CCONE-KALMAN. MT=2 Elastic scattering cross sections 1.0e-5 eV to 75 keV(RRR): obtained by the kernel approximation/6/. 75 keV to 20 MeV: obtained by the CCONE-KALMAN. MT=102 Capture cross section 1.0e-5 eV to 75 keV(RRR): obtained by the kernel approximation/6/. 75 keV to 20 MeV: obtained by the CCONE-KALMAN. MF=34 Covariances for Angular Distributions MT=2 Elastic scattering Obtained by the CCONE-KALMAN. ***************************************************************** * Nuclear Model Calculation with CCONE code /4/ * ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model neutron OMP: Koning et al./7/ proton OMP: Koning and Delaroche /8/ alpha OMP: Avrigeanu et al./9/ with modification 2) Two-component exciton model/10/ * Global parametrization of Koning-Duijvestijn/11/ was used. * Gamma emission channel/12/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Moldauer width fluctuation correction/13/ was included. * Neutron, proton, alpha and gamma decay channels were included. * Transmission coefficients of neutrons, proton and alpha were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction and collective enhancement factor. Parameters are shown in Table 2. * Gamma-ray strength function of Kopecky et al/14/,/15/ was used. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Pb-204 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + 1 0.89917 2 + 2 1.27400 4 + 3 1.35117 2 + 4 1.56327 4 + 5 1.58250 0 + 6 1.58276 2 + 7 1.60476 3 + 8 1.66528 2 + 9 1.68120 1 + 10 1.71220 3 + 11 1.72997 0 + 12 1.76108 2 + 13 1.81745 4 + 14 1.87211 1 + 15 1.93329 1 + ------------------- Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Pb-205 26.1904 0.8381 -7.5629 0.6715 -0.4353 8.0994 Pb-204 26.0839 1.6803 -6.7012 0.6812 -0.2552 9.6416 Pb-203 25.9774 0.8422 -5.8686 0.5356 0.2693 4.6262 Pb-202 23.5189 1.6886 -5.1155 0.6087 0.5389 6.7723 Tl-204 23.7127 0.0000 -7.3974 0.7420 -1.6150 8.6194 Tl-203 23.6158 0.8422 -6.3748 0.6939 -0.7207 7.9782 Tl-202 23.5189 0.0000 -5.8533 0.5817 -0.5512 4.0888 Hg-203 23.6158 0.8422 -6.5295 0.7165 -0.9421 8.7294 Hg-202 23.5189 1.6886 -5.9276 0.7363 -0.7512 10.4860 Hg-201 23.4219 0.8464 -5.2630 0.6922 -1.2829 8.2740 Hg-200 23.3248 1.6971 -4.7209 0.6692 -0.3684 8.5593 Hg-199 23.2277 0.8507 -4.0893 0.6457 -1.1776 7.2191 Hg-198 23.1305 1.7056 -3.4174 0.5931 0.0911 6.9096 -------------------------------------------------------- Table 3. Gamma-ray strength function for Pb-205 -------------------------------------------------------- * E1: ER = 13.77 (MeV) EG = 3.89 (MeV) SIG = 579.28 (mb) * M1: ER = 6.95 (MeV) EG = 4.00 (MeV) SIG = 0.89 (mb) * E2: ER = 10.68 (MeV) EG = 3.65 (MeV) SIG = 5.35 (mb) -------------------------------------------------------- References 1) S.F.Mughabghab: "Atlas of Neutron Resonances, Fifth Edition: Resonance Parameters and Thermal Cross Sections. Z=1-100", Elsevier Science (2006). 2) C.Domingo-Pardo et al.: Phys. Rev. C75, 015806 (2007). 3) R.F.Carlton et al.: Phys Rev. C67, 024601 (2003). 4) O.Iwamoto: J. Nucl. Sci. Technol., 44, 687 (2007). 5) T.Kawano, K.Shibata, JAERI-Data/Code 97-037 (1997) in Japanese. 6) P.Pblozinsky et al.: NL-91287-2010 (2010). 7) A.J.Koning et al.: Nucl. Sci. Eng., 156, 357 (2007). 8) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003). 9) V.Avrigeanu,P.E.Hodgson, and M.Avrigeanu, Report OUNP-94-02 (1994), Phys. Rev. C49,2136 (1994). 10) C.Kalbach: Phys. Rev. C33, 818 (1986). 11) A.J.Koning, M.C.Duijvestijn: Nucl. Phys. A744, 15 (2004). 12) J.M.Akkermans, H.Gruppelaar: Phys. Lett. 157B, 95 (1985). 13) P.A.Moldauer: Nucl. Phys. A344, 185 (1980). 14) J.Kopecky, M.Uhl: Phys. Rev. C41, 1941 (1990). 15) J.Kopecky, M.Uhl, R.E.Chrien: Phys. Rev. C47, 312 (1990).